Article Details

  1. Home
  2. Article Details
image description

PDF

Published

2024-09-05

How to cite

Sinha, S., Sinha, A.K., 2024. An overview of the uptake mechanism of silicon and its importance in increasing yield and salt stress alleviation in crops. Research Biotica 6(3), 99-105. DOI: 10.54083/ResBio/6.3.2024/99-105.

License

Copyright (c) 2024 Research Biotica

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

HOME / ARCHIVES / Vol. 6 No. 3 : July-September (2024) / Review Articles

An Overview of the Uptake Mechanism of Silicon and Its Importance in Increasing Yield and Salt Stress Alleviation in Crops

Sagardeep Sinha*

Dept. of Soil Science and Agricultural Chemistry, Uttar Banga Krishi Viswavidyalaya, Cooch Behar, West Bengal (736 165), India

Abhas Kumar Sinha

Dept. of Soil Science and Agricultural Chemistry, Uttar Banga Krishi Viswavidyalaya, Cooch Behar, West Bengal (736 165), India

DOI: https://doi.org/10.54083/ResBio/6.3.2024/99-105

Keywords: Crop, Remediation, Salt stress tolerance, Silicon, Uptake, Yield

Abstract


Although present in huge abundance in the earth’s crust, the availability of silicon (Si) is very low in soil. But it imparts manifolds benefits on soil and plant health like increasing the yield of crops, stabilization of soil characteristics etc. The uptake of Si in soil and plant is mediated by certain carrier proteins which are present in the root of the crops. Mostly, the Poaceae crops are the efficient users of Si. A major impact of Si in crops is the remediation of biotic and abiotic stress. Globally, salt stress poses a serious hazard to plant development. Numerous studies have been conducted utilizing physiological, molecular genetics and genomic-based techniques in order to investigate the possible mechanisms to regulate the salinity stress through Si application. These studies were carried out in order to get a better understanding of the processes involved. Clarifying silicon's mitigating effects on oxidative stress, Na toxicity and salt-induced osmotic stress has advanced recently. The behavior of silicon in the soil, the processes by which it is absorbed and the function that it plays in plants in the process of warding off salt stress in plants are the primary topics of discussion in this article.

Downloads


not found

Reference


Abbas, T., Balal, R.M., Shahid, M.A., Pervez, M.A., Ayyub, C.M., Aqueel, M.A. Javaid, M.M., 2015. Silicon-induced Alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiologiae Plantarum 37(6), 1-15. DOI: https://doi.org/10.1007/s11738-014-1768-5.

Abinaya, M., Yul-Kuyn, A., 2017. Silicon regulates potential genes involved in major physiological processes in plants to combat stress. Frontiers in Plant Science 8(1), 1346. DOI: https://doi.org/10.3389/fpls.2017.01346.

Allen, B.L., Hajek, B.F., 1989. Mineral occurrence in soil environments. Minerals in Soil Environments 1(1), 199-278. DOI: https://doi.org/10.2136/sssabookser1.2ed.c5.

Aoki, Y., Hoshino, M., Matsubara, T., 2007. Silica and testate amoebae in a soil under pine-oakforest. Geoderma 142(1-2), 29-35. DOI: https://doi.org/10.1016/j.geoderma.2007.07.009.

Bosnic, P., Bosnic, D., Jasnic, J., Nikolic, M., 2018. Silicon mediates sodium transport and partitioning in maize under moderate salt stress. Environmental and Experimental Botany 155(1), 681-687. DOI: https://doi.org/10.1016/j.envexpbot.2018.08.018.

Cheraghi, M., Motesharezadeh, B., Mousavi, S.M., Ma, Q., Ahmadabadi, Z., 2023. Silicon (Si): A regulator nutrient for optimum growth of wheat under salinity and drought stresses-a review. Journal of Plant Growth Regulation 42(9), 5354-5378. DOI: https://doi.org/10.1007/s00344-023-10959-4.

Chongtham, S., Dorjee, L., Hussain, S., 2024. Silicon: A promising solution for pests and abiotic stress management. Biotica Research Today 6(4), 212-214.

Choudhury, F.K., Rivero, R.M., Blumwald, E., Mittler, R., 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal 90(5), 856-867. DOI: https://doi.org/10.1111/tpj.13299.

Coskun, D., Britto, D.T., Huynh, W.Q., Kronzucker, H.J., 2016. The role of silicon in higher plants under salinity and drought stress. Frontiers in Plant Science 7(1), 1072. DOI: https://doi.org/10.3389/fpls.2016.01072.

Datnoff, L.E., Deren, C.W., Snyder, G.H., 1997. Silicon fertilization for disease management of rice in Florida. Crop Protection 16(6), 525-531. DOI: https://doi.org/10.1016/S0261-2194(97)00033-1.

Dietzel, M., 2002. Interaction of polysilicic and monosilicic acid with mineral surfaces. In: Water-Rock Interaction. Water Science and Technology Library, Volume 40. (Eds) Stober, I. and Bucher, K., Springer, Dordrecht. pp. 207-235. DOI: https://doi.org/10.1007/978-94-010-0438-1_9.

Drees, L.R., Wilding, L.P., Smeck, N.E., Senkayi, A.L., 1989. Silica in soils: Quartz and disorders polymorphs. In: Minerals in Soil Environments, Volume 1, Second Edition. (Eds.) Dixon, B. and Weed, S.B. Soil Science Society of America, Madison. pp. 914-974. DOI: https://doi.org/10.2136/sssabookser1.2ed.c19.

Farmer, V.C., Delbos, E., Miller, J.D., 2005. The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127(1-2), 71-79. DOI: https://doi.org/10.1016/j.geoderma.2004.11.014.

Fleck, A.T., Schulze, S., Hinrichs, M., Specht, A., Waßmann, F., Schreiber, L., Schenk, M.K., 2015. Silicon promotes exodermal Casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes. PLoS One 10(9), e0138555. DOI: https://doi.org/10.1371/journal.pone.0138555.

Gao, X., Zou, C., Wang, L., Zhang, F., 2005. Silicon improves water use efficiency in maize plants. Journal of Plant Nutrition 27(8), 1457-1470. DOI: https://doi.org/10.1081/PLN-200025865.

Gomes, D., Agasse, A., Thiébaud, P., Delrot, S., Gerós, H., Chaumont, F., 2009. Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica et Biophysica Acta (BBA)-Biomembranes 1788(6), 1213-1228. DOI: https://doi.org/10.1016/j.bbamem.2009.03.009.

Hansen, H.B., Raben-Lange, B., Raulund-Rasmussen, K., Borggaard, O.K., 1994. Monosilicate adsorption by ferrihydrite and goethite at pH 3-6. Soil Science 158(1), 40-46.

Jones, R.L., 1969. Determination of opal in soil by alkali dissolution analysis. Soil Science Society of America Journal 33(6), 976-978. DOI: https://doi.org/10.2136/sssaj1969.03615995003300060050x.

Kim, Y.H., Khan, A.L., Waqas, M., Shim, J.K., Kim, D.H., Lee, K.Y., Lee, I.J., 2014. Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. Journal of Plant Growth Regulation 33(1), 137-149. DOI: https://doi.org/10.1007/s00344-013-9356-2.

Li, Y.T., Zhang, W.J., Cui, J.J., Lang, D.Y., Li, M., Zhao, Q.P., Zhang, X.H., 2016. Silicon nutrition alleviates the lipid peroxidation and ion imbalance of Glycyrrhiza uralensis seedlings under salt stress. Acta Physiologiae Plantarum 38(1), 1-9. DOI: https://doi.org/10.1007/s11738-016-2108-8.

Liang, Y., Chen, Q.I.N., Liu, Q., Zhang, W., Ding, R., 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology 160(10), 1157-1164. DOI: https://doi.org/10.1078/0176-1617-01065.

Liang, Y., Zhang, W., Chen, Q., Ding, R., 2005. Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany 53(1), 29-37. DOI: https://doi.org/10.1016/j.envexpbot.2004.02.010.

Liang, Y., Zhang, W., Chen, Q., Liu, Y., Ding, R., 2006. Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany 57(3), 212-219. DOI: https://doi.org/10.1016/j.envexpbot.2005.05.012.

Ma, J.F., Ryan, P.R., Delhaize, E., 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science 6(6), 273-278. DOI: https://doi.org/10.1016/S1360-1385(01)01961-6.

Ma, J.F., Tamai, K., Ichii, M., Wu, G.F., 2002. A rice mutant defective in Si uptake. Plant Physiology 130(4), 2111-2117. DOI: https://doi.org/10.1104/pp.010348.

Ma, J.F., Mitani, N., Nagao, S., Konishi, S., Tamai, K., Iwashita, T., Yano, M., 2004. Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiology 136(2), 3284-3289. DOI: https://doi.org/10.1104/pp.104.047365.

Ma, J.F., Yamaji, N., 2006. Silicon uptake and accumulation in higher plants. Trends in Plant Science 11(8), 392-397. DOI: https://doi.org/10.1016/j.tplants.2006.06.007.

Ma, J.F., Yamaji, N., 2008. Functions and transport of silicon in plants. Cellular and Molecular Life Sciences 65, 3049-3057. DOI: https://doi.org/10.1007/s00018-008-7580-x.

Ma, J.F., Yamaji, N., Mitani-Ueno, N., 2011. Transport of silicon from roots to panicles in plants. Proceedings of the Japan Academy: Series B, Physical and Biological Sciences 87(7), 377. DOI: https://doi.org/10.2183/pjab.87.377.

Matichenkov, V.V., Bocharnikova, E.A., 2001. The relationship between silicon and soil physical and chemical properties. In: Studies in Plant Science, Volume 8: Silicon in Agriculture. (Eds.) Datnoff, L.E., Snyder, G.H. and Korndörfer, G.H. Elsevier. pp. 209-219. DOI: https://doi.org/10.1016/S0928-3420(01)80017-3.

Norton, L.D., 1993. Micromorphology of silica cementation in soils. In: Developments in Soil Science, Volume 22: Soil Micromorpohlogy: Studies in Management and Genesis. (Eds.) Ringrose-Voase, A.J. and Humphreys, G.S. Elsevier. pp. 811-824. DOI: https://doi.org/10.1016/S0166-2481(08)70465-3.

Parida, A.K., Das, A.B., 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety 60(3), 324-349. DOI: https://doi.org/10.1016/j.ecoenv.2004.06.010.

Rao, G.B., Susmitha, P., 2017. Silicon uptake, transportation and accumulation in Rice. Journal of Pharmacognosy and Phytochemistry 6(6), 290-293.

Rao, G.B., PI, P.Y., Syriac, E.K., 2017. Silicon nutrition in rice: A review. Journal of Pharmacognosy and Phytochemistry 6(6), 390-392.

Pati, S., Pal, B., Badole, S., Hazra, G.C., Mandal, B., 2016. Effect of silicon fertilization on growth, yield and nutrient uptake of rice. Communications in Soil Science and Plant Analysis 47(3), 284-290. DOI: https://doi.org/10.1080/00103624.2015.1122797.

Sauer, D., Saccone, L., Conley, D.J., Herrmann, L., Sommer, M., 2006. Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80(1), 89-108. DOI: https://doi.org/10.1007/s10533-005-5879-3.

Singh, A.K., Singh, R., Singh, K., 2005. Growth, yield and economics of rice (Oryza sativa) as influenced by level and time of silicon application. Indian Journal of Agronomy 50(3), 190-193. DOI: https://doi.org/10.59797/ija.v50i3.5102.

Snyder, G.H., Jones, D.B., Gascho, G.J., 1986. Silicon fertilization of rice on Everglades Histosols. Soil Science Society of America Journal 50(5), 1259-1263. DOI: https://doi.org/10.2136/sssaj1986.03615995005000050035x.

Sommer, M., Kaczorek, D., Kuzyakov, Y., Breuer, J., 2006. Silicon pools and fluxes in soils and landscapes - A review. Journal of Plant Nutrition and Soil Science 169(3), 310-329. DOI: https://doi.org/10.1002/jpln.200521981.

Tsujimoto, Y., Muranaka, S., Saito, K., Asai, H., 2014. Limited Si-nutrient status of rice plants in relation to plant-available Si of soils, nitrogen fertilizer application and rice-growing environments across Sub-Saharan Africa. Field Crops Research 155(1), 1-9. DOI: https://doi.org/10.1016/j.fcr.2013.10.003.

Wu, J., Guo, J., Hu, Y., Gong, H., 2015. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Frontiers in Plant Science 6(1), 453. DOI: https://doi.org/10.3389/fpls.2015.00453.

Xu, C.X., Ma, Y.P., Liu, Y.L., 2015. Effects of silicon (Si) on growth, quality and ionic homeostasis of aloe under salt stress. South African Journal of Botany 98(1), 26-36. DOI: https://doi.org/10.1016/j.sajb.2015.01.008.

Yamaji, N., Ma, J.F., 2009. A transporter at the node responsible for intervascular transfer of silicon in rice. The Plant Cell 21(9), 2878-2883. DOI: https://doi.org/10.1105/tpc.109.069831.

Yamaji, N., Ma, J.F., 2011. Further characterization of a rice silicon efflux transporter, Lsi2. Soil Science and Plant Nutrition 57(2), 259-264. DOI: https://doi.org/10.1080/00380768.2011.565480.

Yang, Y., Guo, Y., 2018a. Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology 60(9), 796-804. DOI: https://doi.org/10.1111/jipb.12689.

Yang, Y., Guo, Y., 2018b. Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytologist 217(2), 523-539. DOI: https://doi.org/10.1111/nph.14920.

Zhu, Y., Gong, H., 2014. Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development 34(1), 455-472. DOI: https://doi.org/10.1007/s13593-013-0194-1.