Article Details

  1. Home
  2. Article Details
image description

PDF

Published

2024-06-18

How to cite

Berryish, M.C., Peter, S., Gauda, B., Dhanvarsha, M., Billy, S., 2024. Bacillus thuringiensis (Bt): Clarifying the genomic landscape for precision pest management in agriculture. Plant Health Archives 2(2), 48-60. DOI: 10.54083/PHA/2.2.2024/48-60.

Issue

License

Copyright (c) 2024 Plant Health Archives

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

HOME / ARCHIVES / Vol. 2 No. 2 : April-June (2024) / Review Articles

Bacillus thuringiensis (Bt): Clarifying the Genomic Landscape for Precision Pest Management in Agriculture

Berryish Metha, C.*

Dept. of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu (641 003), India

Samuel Peter

Dept. of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu (641 003), India

Bishnupriya Gauda

Dept. of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu (641 003), India

Dhanvarsha M.

Dept. of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu (641 003), India

Selsiya Billy

Dept. of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu (641 003), India

DOI: https://doi.org/10.54083/PHA/2.2.2024/48-60

Keywords: Bacillus thuringiensis, Bioinsecticide proteins, Evolutionary analysis, Genetically modified crops, Genome profiling

Abstract


The story of Bt (Bacillus thuringiensis) is presented in detail, covering its discovery in 1901 and its rise to prominence in the worldwide fight against pests. Originating with Shigetane Ishiwata's isolation in 1901 and Ernst Berliner's identification in 1911, Bt's milestones include the 1958 commercialization and 1996 introduction of genetically modified Bt crops, covering 1.5 billion hectares by 2022. Bt, a dominant force in biocontrol with over 98% of commercialized biopesticides, employs diverse toxins such as Cry, Cyt and Vip families. Its precise insecticidal action, notably Cry proteins' multistep mechanism, targets key pests like Fall Armyworm and Diamondback Moth. Bt's versatile applications extend to combating nematodes and genetic exploration through advanced techniques, including whole genome sequencing. Indigenous Bt isolates, exemplified by T405 and T414, showcase robust toxicity. Phylogenetic tree construction unravels the evolutionary pathways of insecticidal crystal proteins, portraying Bt as a resilient force in safeguarding agriculture and ecosystems. This review concludes by envisioning the future evolution of Bt's application in agriculture, emphasizing sustainable practices guided by the collaboration between nature and science.

Downloads


not found

Reference


Al-Ahmad, A., Follo, M., Selzer, A.C., Hellwig, E., Hannig, M., Hannig, C., 2009. Bacterial colonization of enamel in situ investigated using fluorescence in situ hybridization. Journal of Medical Microbiology 58(10), 1359-1366. DOI: https://doi.org/10.1099/jmm.0.011213-0.

Alon, N., Chor, B., Pardi, F., Rapoport, A., 2010. Approximate maximum parsimony and ancestral maximum likelihood. IEEE/ACM Transactions on Computational Biology and Bioinformatics 7(1), 183-187.

Arrieta, G., Espinoza, A.M., 2006. Characterization of a Bacillus thuringiensis strain collection isolated from diverse Costa Rican natural ecosystems. Revista de Biología Tropical 54(1), 13-27.

Balla, A., Bhaskar M., Bagade, P., Rawal, N., 2019. Yield losses in maize (Zea mays) due to fall armyworm infestation and potential IoT-based interventions for its control. Journal of Entomology and Zoology Studies 7(5), 920-927.

Baron, M., Norman, D.G., Campbell, I.D., 1991. Protein modules. Trends in Biochemical Sciences 16, 13-17. DOI: https://doi.org/10.1016/0968-0004(91)90009-K.

Baudron, F., Zaman-Allah, M.A., Chaipa, I., Chari, N., Chinwada, P., 2019. Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in Eastern Zimbabwe. Crop Protection 120, 141-150. DOI: https://doi.org/10.1016/j.cropro.2019.01.028.

Beegle, C.C., Yamamoto, T., 1992. Invitation paper (CP Alexander Fund): History of Bacillus thuringiensis Berliner research and development. The Canadian Entomologist 124(4), 587-616. DOI: https://doi.org/10.4039/Ent124587-4.

Ben-Dov, E., Zaritsky, A., Dahan, E., Barak, Z., Sinai, R., Manasherob, R., Khamraev, A., Troitskaya, E., Dubitsky, A., Berezina, N., Margalith, Y., 1997. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Applied and Environmental Microbiology 63(12), 4883-4890. DOI: https://doi.org/10.1128/aem.63.12.4883-4890.1997.

Ben-Dov, E., Wang, Q., Zaritsky, A., Manasherob, R., Barak, Z., Schneider, B., Khamraev, A., Baizhanov, M., Glupov, V., Margalith, Y., 1999. Multiplex PCR screening to detect cry9 genes in Bacillus thuringiensis strains. Applied and Environmental Microbiology 65(8), 3714-3716. DOI: https://doi.org/10.1128/AEM.65.8.3714-3716.1999.

Berliner, E., 1915. Über die Schlaffsucht der Mehlmottenraupe (Ephestia kühniella Zell.) und ihren Erreger Bacillus thuringiensis n. sp. Zeitschrift für Angewandte Entomologie 2(1), 29-56. DOI: https://doi.org/10.1111/j.1439-0418.1915.tb00334.x.

Berryish, M.C., Rajadurai, G., Raghu, R., Jayakanthan, M., Kokiladevi, E., Murugan, M., Balasubramani, V., 2023. Molecular characterization and nematicidal activity of indigenous Bacillus thuringiensis isolate T210. Biological Forum - An International Journal 15(9), 274-281.

Bourque, S.N., Valero, J.R., Mercier, J., Lavoie, M.C., Levesque, R.C., 1993. Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis. Applied and Environmental Microbiology 59(2), 523-527. DOI: https://doi.org/10.1128/aem.59.2.523-527.1993.

Bouslama, T., Laarif, A., Soltani, A., Chaieb, I., Amri, M., Rhouma, A., 2019. Screening chickpea lines and varieties for a possible resistance or tolerance to the pod borer Helicoverpa armigera. Tunisian Journal of Plant Protection 14(1), 69-81.

Bravo, A., 1997. Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains. Journal of Bacteriology 179(9), 2793-2801. DOI: https://doi.org/10.1128/jb.179.9.2793-2801.1997.

Bravo, A., Soberón, M., Gill, S.S., 2005. Bacillus thuringiensis: Mechanisms and use. In: Comprehensive Molecular Insect Science, Volume 6. (Ed.) Gilbert, L.I. Pergamon, Elsevier. pp. 175-205. DOI: https://doi.org/10.1016/B0-44-451924-6/00081-8.

Bravo, A., Gill, S.S., Soberón, M., 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4), 423-435. https://doi.org/10.1016/j.toxicon.2006.11.022.

Bravo, A., Gómez, I., Porta, H., García-Gómez, B.I., Rodriguez-Almazan, C., Pardo, L., Soberón, M., 2013. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnology 6(1), 17-26. DOI: https://doi.org/10.1111/j.1751-7915.2012.00342.x.

Brookes, G., 2022. Genetically modified (GM) crop use 1996-2020: Environmental impacts associated with pesticide use change. GM Crops & Food 13(1), 262-289. DOI: https://doi.org/10.1080/21645698.2022.2118497.

Brousseau, R., Saint-Onge, A., Prefontaine, G., Masson, L., Cabana, J., 1993. Arbitrary primer polymerase chain reaction, a powerful method to identify Bacillus thuringiensis serovars and strains. Applied and Environmental Microbiology 59(1), 114-119. DOI: https://doi.org/10.1128/aem.59.1.114-119.1993.

Cao, J., Shelton, A.M., Earle, E.D., 2008. Sequential transformation to pyramid two Bt genes in vegetable Indian mustard (Brassica juncea L.) and its potential for control of diamondback moth larvae. Plant Cell Reports 27, 479-487. DOI: https://doi.org/10.1007/s00299-007-0473-x.

Cao, Z.L., Tan, T.T., Jiang, K., Mei, S.Q., Hou, X.Y., Cai, J., 2018. Complete genome sequence of Bacillus thuringiensis L-7601, a wild strain with high production of melanin. Journal of Biotechnology 275, 40-43. DOI: https://doi.org/10.1016/j.jbiotec.2018.03.020.

Central Tobacco Research Institute (CTRI), 2023. Management of insect pests. Available at: https://ctri.icar.gov.in/for_controlPests.php. Accessed on: 9th March, 2024.

Ceron, J., Ortíz, A., Quintero, R., Güereca, L., Bravo, A., 1995. Specific PCR primers directed to identify cryI and cryIII genes within a Bacillus thuringiensis strain collection. Applied and Environmental Microbiology 61(11), 3826-3831. DOI: https://doi.org/10.1128/aem.61.11.3826-3831.1995.

Chan, R.H., Chan, T.H., Yeung, H.M., Wang, R.W., 2011. Composition vector method based on maximum entropy principle for sequence comparison. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(1), 79-87. DOI: https://doi.org/10.1109/TCBB.2011.45.

Chelliah, R., Wei, S., Park, B.J., Rubab, M., Dalirii, E.B.M., Barathikannan, K., Jin, Y.G., Oh, D.H., 2019. Whole genome sequence of Bacillus thuringiensis ATCC 10792 and improved discrimination of Bacillus thuringiensis from Bacillus cereus group based on novel biomarkers. Microbial Pathogenesis 129, 284-297. DOI: https://doi.org/10.1016/j.micpath.2019.02.014.

Chestukhina, G.G., Kostina, L.I., Zalunin, I.A., Revina, L.P., Mikhailova, A.L., Stepanov, V.M., 1994. Production of multiple δ-endotoxins by Bacillus thuringiensis: δ-endotoxins produced by strains of the subspecies galleriae and wuhanensis. Canadian Journal of Microbiology 40(12), 1026-1034. DOI: https://doi.org/10.1139/m94-163.

Crickmore, N., Berry, C., Panneerselvam, S., Mishra, R., Connor, T.R., Bonning, B.C., 2021 A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. Journal of Invertebrate Pathology 186, 107438. DOI: https://doi.org/10.1016/j.jip.2020.107438.

Czepak, C., Albernaz, K.C., Vivan, L.M., Guimarães, H.O., Carvalhais, T., 2013. First reported occurrence of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Brazil. Pesquisa Agropecuária Tropical 43(1), 110-113. DOI: https://doi.org/10.1590/S1983-40632013000100015.

Day, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Corniani, N., Early, R., Godwin, J., Gomez, J., Moreno, P.G., Murphy, S.T., Oppong-Mensah, B., Phiri, N., Pratt, C., Silvestri, S., Witt, A., 2017. Fall armyworm: Impacts and implications for Africa. Outlooks on Pest Management 28(5), 196-201. DOI: https://doi.org/10.1564/v28_oct_02.

de Barjac, H., Lemille, F., 1970. Presence of flagellar antigenic subfactors in serotype 3 of Bacillus thuringiensis. Journal of Invertebrate Pathology 15(1), 139-140. DOI: https://doi.org/10.1016/0022-2011(70)90113-8.

de Maagd, R.A., Bravo, A., Berry, C., Crickmore, N., Schnepf, H.E., 2003. Structure, diversity and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annual Review of Genetics 37, 409-433. DOI: https://doi.org/10.1146/annurev.genet.37.110801.143042.

Deshmukh, S.S., Kalleshwaraswamy, C.M., Prasanna, B.M., Sannathimmappa, H.G., Kavyashree, B.A., Sharath, K.N., Pradeep, P., Patil, K.K.R., 2021. Economic analysis of pesticide expenditure for managing the invasive fall armyworm, Spodoptera frugiperda (J.E. Smith) by maize farmers in Karnataka, India. Current Science 121(11), 1487-1492. DOI: https://doi.org/10.18520/cs/v121/i11/1487-1492.

Dhir, B.C., Mohapatra, H.K., Senapati, B., 1992. Assessment of crop loss in groundnut due to tobacco caterpillar, Spodoptera litura (F.). Indian Journal of Plant Protection 20(2), 215-217.

Dionglay, C., 2022. Research proves that crop biotechnology continues to make a significant contribution to feeding the world. In: Science Speaks (a blog by ISAAA). Available at: https://www.isaaa.org/blog/entry/default.asp?BlogDate=10/20/2022. Accessed on: 25th March, 2024.

Dow, J.A.T., Harvey, W.R., 1988. Role of midgut electrogenic K+ pump potential difference in regulating lumen K+ and pH in larval Lepidoptera. Journal of Experimental Biology 140(1), 455-463. DOI: https://doi.org/10.1242/jeb.140.1.455.

El-Gaied, L., Mahmoud, A., Salem, R., Elmenofy, W., Saleh, I., Abulreesh, H.H., Arif, I.A., Osman, G., 2020. Characterization, cloning, expression and bioassay of Vip3 gene isolated from Egyptian Bacillus thuringiensis against whiteflies. Saudi Journal of Biological Sciences 27(5), 1363-1367. DOI: https://doi.org/10.1016/j.sjbs.2019.12.013.

English, L., Slatin, S.L., 1992. Mode of action of delta-endotoxins from Bacillus thuringiensis: A comparison with other bacterial toxins. Insect Biochemistry and Molecular Biology 22(1), 1-7. DOI: https://doi.org/10.1016/0965-1748(92)90093-T.

Fernandez-Luna, M.T., Kumar, P., Hall, D.G., Mitchell, A.D., Blackburn, M.B., Bonning, B.C., 2019. Toxicity of Bacillus thuringiensis-derived pesticidal proteins Cry1Ab and Cry1Ba against Asian citrus psyllid, Diaphorina citri (Hemiptera). Toxins 11(3), 173. DOI: https://doi.org/10.3390/toxins11030173.

Gangurde, S.M., Wankhede, S.M., 2009. Biology of diamond back moth, Plutella xylostella Linn. International Journal of Plant Protection 2(2), 165-166.

Gill, S.S., Cowles, E.A., Pietrantonio, P.V., 1992. The mode of action of Bacillus thuringiensis endotoxins. Annual Review of Entomology 37, 615-634. DOI: https://doi.org/10.1146/annurev.en.37.010192.003151.

Gothandaraman, R., Venkatasamy, B., Thangavel, T., Eswaran, K., Subbarayalu, M., 2022. Molecular characterization and toxicity evaluation of indigenous Bacillus thuringiensis isolates against key lepidopteran insect pests. Egyptian Journal of Biological Pest Control 32, 143. DOI: https://doi.org/10.1186/s41938-022-00639-y.

Guo, S., Liu, M., Peng, D., Ji, S., Wang, P., Yu, Z., Sun, M., 2008. New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Applied and Environmental Microbiology 74(22), 6997-7001. DOI: https://doi.org/10.1128/AEM.01346-08.

Hansen, B.M., Damgaard, P.H., Eilenberg, J., Pedersen, J.C., 1998. Molecular and phenotypic characterization of Bacillus thuringiensis isolated from leaves and insects. Journal of Invertebrate Pathology 71(2), 106-114. DOI: https://doi.org/10.1006/jipa.1997.4712.

Herlinda, S., Simbolon, I.M.P., Hasbi., Suwandi, S., Suparman., 2022. Host plant species of the new invasive pest, fall armyworm (Spodoptera frugiperda) in South Sumatra. In: IOP Conference Series: Earth and Environmental Science 995(1), 012034. DOI: https://doi.org/10.1088/1755-1315/995/1/012034.

Höfte, H., Whiteley, H.R., 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews 53(2), 242-255. DOI: https://doi.org/10.1128/mr.53.2.242-255.1989.

Hruska, A.J., Gould, F., 1997. Fall armyworm (Lepidoptera: Noctuidae) and Diatraea lineolata (Lepidoptera: Pyralidae): Impact of larval population level and temporal occurrence on maize yield in Nicaragua. Journal of Economic Entomology 90(2), 611-622. DOI: https://doi.org/doi:10.1093/jee/90.2.611.

Ibrahim, M.A., Griko, N., Junker, M., Bulla, L.A., 2010. Bacillus thuringiensis: A genomics and proteomics perspective. Bioengineered Bugs 1(1), 31-50. DOI: https://doi.org/10.4161/bbug.1.1.10519.

ISAAA, 2019. Global status of commercialized Biotech/GM crops in 2019: Biotech crops drive socio-economic development and sustainable environment in the new frontier. ISAAA Ithaca, NY, USA. URL: https://www.isaaa.org/resources/publications/briefs/55/.

Jain, D., Kachhwaha, S., Jain, R., Kothari, S.L., 2012. PCR based detection of cry genes in indigenous strains of Bacillus thuringiensis isolated from the soils of Rajasthan. Indian Journal of Biotechnology 11, 491-494.

Jain, D., Sunda, S.D., Sanadhya, S., Nath, D.J., Khandelwal, S.K., 2017. Molecular characterization and PCR-based screening of cry genes from Bacillus thuringiensis strains. 3 Biotech 7 4. DOI: https://doi.org/10.1007/s13205-016-0583-7.

Jallouli, W., Driss, F., Fillaudeau, L., Rouis, S., 2020. Review on biopesticide production by Bacillus thuringiensis subsp. kurstaki since 1990: Focus on bioprocess parameters. Process Biochemistry 98, 224-232. DOI: https://doi.org/10.1016/j.procbio.2020.07.023.

Javed, H., Mukhtar, T., 2017. Population dynamics of diamond back moth (Plutella xylostella L.) on five cauliflower cultivars. Plant Protection 1(1), 11-16.

Jayaraj, S., 1990. The problem of Helicoverpa armigera in India and its integrated pest management. In: Proceedings of the National Workshop, Volume 4. (Eds.) Jayaraj, S., Uthamasamy, S., Gopalan, M. and Rabindra, R.J. Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. February 1988. pp. 75-84.

Johns, R.C., Bowden, J.J., Carleton, D.R., Cooke, B.J., Edwards, S., Emilson, E.J.S., James, P.M.A., Kneeshaw, D., MacLean, D.A., Martel, V., Moise, E.R.D., Mott, G.D., Norfolk, C.J., Owens, E., Pureswaran, D.S., Quiring, D.T., Régnière, J., Richard, B., Stastny, M., 2019. A conceptual framework for the spruce budworm early intervention strategy: Can outbreaks be stopped? Forests 10(10), 910. DOI: https://doi.org/10.3390/f10100910.

Jouzani, G.S., Valijanian, E., Sharafi, R., 2017. Bacillus thuringiensis: A successful insecticide with new environmental features and tidings. Applied Microbiology and Biotechnology 101, 2691-2711. DOI: https://doi.org/10.1007/s00253-017-8175-y.

Juarez-Perez, V.M., Ferrandis, M.D., Frutos, R., 1997. PCR-based approach for detection of novel Bacillus thuringiensis cry genes. Applied and Environmental Microbiology 63(8), 2997-3002. DOI: https://doi.org/10.1128/aem.63.8.2997-3002.1997.

Karuppaiyan, T., Balasubramani, V., Murugan, M., Raveendran, M., Rajadurai, G., Kokiladevi, E., 2022. Characterization and evaluation of indigenous Bacillus thuringiensis isolate T352 against fall armyworm, Spodoptera frugiperda (J.E. Smith). International Journal of Plant & Soil Science 34(21), 729-736. DOI: https://doi.org/10.9734/ijpss/2022/v34i2131325.

Kenis, M., du Plessis, H., Van den Berg, J., Ba, M.N., Goergen, G., Kwadjo, K.E., Baoua, I., Tefera, T., Buddie, A., Cafà, G., Offord, L., Rwomushana, I., Polaszek, A., 2019. Telenomus remus, a candidate parasitoid for the biological control of Spodoptera frugiperda in Africa, is already present on the continent. Insects 10(4), 92. DOI: https://doi.org/10.3390/insects10040092.

Khan, M., Zaidi, B., Haque, Z., 2012. Nematicides control rice root-knot, caused by Meloidogyne graminicola. Phytopathologia Mediterranea 51(2), 298-306. DOI: https://doi.org/10.14601/Phytopathol_Mediterr-9632.

Khurshid, H., Zaheer, H., Yunus, F.N., Manzoor, F., Latif, A.A., Rashid, F., 2023. Site-directed mutagenesis in Cry proteins of Bacillus thuringiensis to demonstrate the role of domain II and domain III in toxicity enhancement toward Spodoptera litura. Egyptian Journal of Biological Pest Control 33, 86. DOI: https://doi.org/10.1186/s41938-023-00731-x.

Kleter, G.A., Bhula, R., Bodnaruk, K., Carazo, E., Felsot, A.S., Harris, C.A., Katayama, A., Kuiper, H.A., Racke, K.D., Rubin, B., Shevah, Y., Stephenson, G.R., Tanaka, K., Unsworth, J., Wauchope, R.D., Wong, S.S., 2007. Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective. Pest Management Science (formerly, Pesticide Science) 63(11), 1107-1115. DOI: https://doi.org/10.1002/ps.1448.

Knowles, B.H., Dow, J.A.T., 1993. The crystal δ‐endotoxins of Bacillus thuringiensis: Models for their mechanism of action on the insect gut. BioEssays 15(7), 469-476. DOI: https://doi.org/10.1002/bies.950150706.

Lacey, L.A., Frutos, R., Kaya, H.K., Vail, P., 2001. Insect pathogens as biological control agents: Do they have a future? Biological Control 21(3), 230-248. DOI: https://doi.org/10.1006/bcon.2001.0938.

Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M., Goettel, M.S., 2015. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology 132, 1-41. DOI: https://doi.org/10.1016/j.jip.2015.07.009.

Lachance, D., Hamel, L.P., Pelletier, F., Valéro, J., Bernier-Cardou, M., Chapman, K., van Frankenhuyzen, K., Séguin, A., 2007. Expression of a Bacillus thuringiensis Cry1Ab gene in transgenic white spruce and its efficacy against the spruce budworm (Choristoneura fumiferana). Tree Genetics & Genomes 3, 153-167. DOI: https://doi.org/10.1007/s11295-006-0072-y.

Lambert, B., Peferoen, M., 1992. Insecticidal promise of Bacillus thuringiensis: Facts and mysteries about a successful biopesticide. BioScience 42(2), 112-122. DOI: https://doi.org/10.2307/1311652.

Lee, M.K., Milne, R.E., Ge, A.Z., Dean, D.H., 1992. Location of a Bombyx mori receptor binding region on a Bacillus thuringiensis delta-endotoxin. Journal of Biological Chemistry 267(5), 3115-3121. DOI: https://doi.org/10.1016/S0021-9258(19)50702-5.

Lewis, F.B., Dubois, N.R., Grimble, D., Metterhouse, W., Quimby, J., 1974. Gypsy moth: Efficacy of aerially-applied Bacillus thuringiensis. Journal of Economic Entomology 67(3), 351-354. DOI: https://doi.org/10.1093/jee/67.3.351.

Li, X.Q., Tan, A., Voegtline, M., Bekele, S., Chen, C.S., Aroian, R.V., 2008. Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biological Control 47(1), 97-102. DOI: https://doi.org/10.1016/j.biocontrol.2008.06.007.

Lin, Y., Fang, G., Cai, F., 2008. The insecticidal crystal protein Cry2Ab10 from Bacillus thuringiensis: Cloning, expression and structure simulation. Biotechnology Letters 30, 513-519. DOI: https://doi.org/10.1007/s10529-007-9572-6.

Liu, J., Song, F., Zhang, J., Liu, R., He, K., Tan, J., Huang, D., 2007. Identification of Vip3A‐type genes from Bacillus thuringiensis strains and characterization of a novel Vip3A‐type gene. Letters in Applied Microbiology 45(4), 432-438. DOI: https://doi.org/10.1111/j.1472-765X.2007.02217.x.

Liu, C.X., Li, Y.H., Gao, Y.L., Ning, C.M., Wu, K.M., 2010. Cotton bollworm resistance to Bt transgenic cotton: A case analysis. Science China Life Sciences 53, 934-941. DOI: https://doi.org/10.1007/s11427-010-4045-x.

Lobo, K.S., Soares-da-Silva, J., da Silva, M.C., Tadei, W.P., Polanczyk, R.A., Pinheiro, V.C.S., 2018. Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil and their toxicity to Aedes aegypti larvae. Revista Brasileira de Entomologia 62(1), 5-12. DOI: https://doi.org/10.1016/j.rbe.2017.11.004.

Madhu, T.N., Pandian, R.T.P., Apshara, S.E., Bhavishya, A., Josephrajkumar, A., Kumar, B.J.N., Kumar, P.S., 2023. New occurrence of the Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) infestation on cocoa in India. The Journal of the Lepidopterists' Society 77(2), 110-115. DOI: https://doi.org/10.18473/lepi.77i2.a4.

Marak, R.M., Firake, D.M., Sontakke, P.P., Behere, G.T., 2017. Mode of inheritance of indoxacarb resistance in diamondback moth, Plutella xylostella (L.) and cross resistance to different groups of pesticides. Phytoparasitica 45, 549-558. DOI: https://doi.org/10.1007/s12600-017-0618-6.

Milne, R., Kaplan, H., 1993. Purification and characterization of a trypsin-like digestive enzyme from spruce budworm (Chroristoneura fumiferana) responsible for the activation of δ-endotoxin from Bacillus thuringiensis. Insect Biochemistry and Molecular Biology 23(6), 663-673. DOI: https://doi.org/10.1016/0965-1748(93)90040-Y.

Mohammed, S.H., El Saedy, M.A., Enan, M.R., Ibrahim, N.E., Ghareeb, A., Moustafa, S.A., 2008. Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. Journal of Cell and Molecular Biology 7(1), 57-66.

Monobrullah, M., 2019. Insect pest and disease management in conservation agriculture. In: Training Manual on Conservation Agriculture for Climate Resilient Farming & Doubling Farmers’ Income. (Eds.) Mishra, J.S., Rakesh, K., Kirti, S. and Bhatt, B.P. ICAR-Research Complex for Eastern Region, Patna. pp. 109-113.

Montezano, D.G., Specht, A., Sosa-Gómez, D.R., Roque-Specht, V.F., Sousa-Silva, J.C., Paula-Moraes, S.V., Peterson, J.A., Hunt, T.E., 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology 26(2), 286-300. DOI: https://doi.org/10.4001/003.026.0286.

Morett, E., Segovia, L., 1993. The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. Journal of Bacteriology 175(19), 6067-6074. DOI: https://doi.org/10.1128/jb.175.19.6067-6074.1993.

Munjal, G., Hanmandlu, M., Srivastava, S., 2019. Phylogenetics algorithms and applications. In: Ambient Communications and Computer Systems. (Eds.) Hu, Y.C., Tiwari, S., Mishra, K. and Trivedi, M. Advances in Intelligent Systems and Computing, Volume 904. Springer, Singapore. pp. 187-194. DOI: https://doi.org/10.1007/978-981-13-5934-7_17.

Nair, K., Al-Thani, R., Al-Thani, D., Al-Yafei, F., Ahmed, T., Jaoua, S., 2018. Diversity of Bacillus thuringiensis strains from Qatar as shown by crystal morphology, δ-endotoxins and cry gene content. Frontiers in Microbiology 9, 708. DOI: https://doi.org/10.3389/fmicb.2018.00708.

Navya, R.N.S., Balasubramani, V., Raveendran, M., Murugan, M., Lakshmanan, A., 2021. Diversity of indigenous Bacillus thuringiensis isolates toxic to the diamondback moth, Plutella xylostella (L.) (Plutellidae: Lepidoptera). Egyptian Journal of Biological Pest Control 31, 151. DOI: https://doi.org/10.1186/s41938-021-00495-2.

Oten, K.L.F., Jetton, R.M., Coyle, D.R., 2023. Ecology, impacts and management of common late-season defoliators of Southern Hardwoods. Journal of Integrated Pest Management 14(1), 4. DOI: https://doi.org/10.1093/jipm/pmad002.

Palma, L., Muñoz, D., Berry, C., Murillo, J., Caballero, P., 2014. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 6(12), 3296-3325. DOI: https://doi.org/10.3390/toxins6123296.

Qaim, M., Zilberman, D., 2003. Yield effects of genetically modified crops in developing countries. Science 299(5608), 900-902. URL: https://www.jstor.org/stable/3833617.

Rabha, M., Das, D., Konwar, T., Acharjee, S., Sarmah, B.K., 2023. Whole genome sequencing of a novel Bacillus thuringiensis isolated from Assam soil. BMC Microbiology 23, 91. DOI: https://doi.org/10.1186/s12866-023-02821-0.

Radnedge, L., Agron, P.G., Hill, K.K., Jackson, P.J., Ticknor, L.O., Keim, P. andersen, G.L., 2003. Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Applied and Environmental Microbiology 69(5), 2755-2764. DOI: https://doi.org/10.1128/AEM.69.5.2755-2764.2003.

Rahman, M.M., 1990. Infestation and yield loss in chickpea due to pod borer in Bangladesh. Bangladesh Journal of Agricultural Research 15(2), 16-23.

Rajashekhar, M., Mittal, A., Dharavath, V., Kalia, V.K., 2018. Characterization of potential native Bacillus thuringiensis strains isolated from insect cadavers against cotton aphid Aphis gossypii Glover (Hemiptera: Aphididae). Indian Journal of Entomology 80(2), 177-184. DOI: https://doi.org/10.5958/0974-8172.2018.00032.9.

Ramalakshmi, A., Udayasuriyan, V., 2010. Diversity of Bacillus thuringiensis isolated from Western Ghats of Tamil Nadu state, India. Current Microbiology 61, 13-18. DOI: https://doi.org/10.1007/s00284-009-9569-6.

Ramalakshmi, A., Sharmila, R., Iniyakumar, M., Gomathi, V., 2020. Nematicidal activity of native Bacillus thuringiensis against the root knot nematode, Meloidogyne incognita (Kofoid and White). Egyptian Journal of Biological Pest Control 30, 90. DOI: https://doi.org/10.1186/s41938-020-00293-2.

Reyaz, A.L., Gunapriya, L., Arulselvi, P.I., 2017. Molecular characterization of indigenous Bacillus thuringiensis strains isolated from Kashmir valley. 3 Biotech 7, 143. DOI: https://doi.org/10.1007/s13205-017-0756-z.

Reyaz, A.L., Balakrishnan, N., Udayasuriyan, V., 2019. Genome sequencing of Bacillus thuringiensis isolate T414 toxic to pink bollworm (Pectinophora gossypiella Saunders) and its insecticidal genes. Microbial Pathogenesis 134, 103553. DOI: https://doi.org/10.1016/j.micpath.2019.103553.

Ruan, L., Crickmore, N., Peng, D., Sun, M., 2015. Are nematodes a missing link in the confounded ecology of the entomopathogen Bacillus thuringiensis? Trends in Microbiology 23(6), 341-346. DOI: https://doi.org/10.1016/j.tim.2015.02.011.

Rwomushana, I., 2019. Spodoptera frugiperda (fall armyworm). CABI Compendium (29810). DOI: https://doi.org/10.1079/cabicompendium.29810.

Salama, H.S., Sharaby, A., 1985. Histopathological changes in Heliothis armigera infected with Bacillus thuringiensis as detected by electron microscopy. International Journal of Tropical Insect Science 6, 503-511. DOI: https://doi.org/10.1017/S174275840000432X.

Sanap, M.M., Deshmukh, R.B., 1987. Testing of different insecticides for the control of Heliothis armigera (Hub.) on chickpea. International Chickpea Newsletter 17, 15-16.

Sánchez‐Soto, A.I., Saavedra‐González, G.I., Ibarra, J.E., Salcedo‐Hernández, R., Barboza‐Corona, J.E., Rincón‐Castro, M.C.D., 2015. Detection of β‐exotoxin synthesis in Bacillus thuringiensis using an easy bioassay with the nematode Caenorhabditis elegans. Letters in Applied Microbiology 61(6), 562-567. DOI: https://doi.org/10.1111/lam.12493.

Sarfraz, M., Keddie, A.B., Dosdall, L.M., 2005. Biological control of the diamondback moth, Plutella xylostella: A review. Biocontrol Science and Technology 15(8), 763-789. DOI: https://doi.org/10.1080/09583150500136956.

Sathyan, T., Jayakanthan, M., Mohankumar, S., Balasubramani, V., Kokiladevi, E., Ravikesavan, R., Kennedy, J.S., Sathiah, N., 2022. Genome profiling of an indigenous Bacillus thuringiensis isolate, T405 toxic against the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Microbial Pathogenesis 173(Part A), 105820. DOI: https://doi.org/10.1016/j.micpath.2022.105820.

Schäfer, L., Volk, F., Kleespies, R.G., Jehle, J.A., Wennmann, J.T., 2023. Elucidating the genomic history of commercially used Bacillus thuringiensis subsp. tenebrionis strain NB176. Frontiers in Cellular and Infection Microbiology 13, 1129177. DOI: https://doi.org/10.3389/fcimb.2023.1129177.

Schwartz, R., Schäffer, A.A., 2017. The evolution of tumour phylogenetics: Principles and practice. Nature Reviews Genetics 18, 213-229. DOI: https://doi.org/10.1038/nrg.2016.170.

Sena, J.A.D., Hernández-Rodríguez, C.S., Ferré, J., 2009. Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Applied and Environmental Microbiology 75(7), 2236-2237. DOI: DOI: https://doi.org/10.1128/AEM.02342-08.

Sharanabasappa, S.D., Kalleshwaraswamy, C.M., Asokan, R., Swamy, H.M., Maruthi, M.S., Pavithra, H.B., Hegbe, K., Navi, S., Prabhu, S.T., Goergen, G.E., 2018. First report of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Management in Horticultural Ecosystems 24(1), 23-29. URL: https://hdl.handle.net/10568/103519.

Sharma, H.C., 2001. Cotton bollworm/legume pod borer, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera): Biology and management. In: Crop Protection Compendium. Commonwealth Agricultural Bureau International, Oxon, UK. p. 72.

Sharma, P., Kumawat, K.C., Yadav, M.K., 2017. Seasonal abundance of diamondback moth and natural enemies in Cabbage. Annals of Plant Protection Sciences 25(2), 426-427.

Shylesha, A.N., Jalali, S.K., Gupta, A., Varshney, R., Venkatesan, T., Shetty, P., Ojha, R., Ganiger, P.C., Navik, O., Subaharan, K., Bakthavatsalam, N., Ballal, C.R., Raghavendra, A., 2018. Studies on new invasive pest Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and its natural enemies. Journal of Biological Control 32(3), 145-151. DOI: https://doi.org/10.18311/jbc/2018/21707.

Silva, R., Furlong, M.J., 2012. Diamondback moth oviposition: Effects of host plant and herbivory. Entomologia Experimentalis et Applicata 143(3), 218-230. DOI: https://doi.org/10.1111/j.1570-7458.2012.01255.x.

Singh, S., Raghuraman, M., Keerthi, M.C., Das, A., Kar, S.K., Das, B., Devi, H.L., Sunani, S.K., Sahoo, M.R., Casini, R., Elansary, H.O., Acharya, G.C., 2023. Occurrence, distribution, damage potential and farmers’ perception on fall armyworm, Spodoptera frugiperda (J.E. Smith): Evidence from the eastern Himalayan region. Sustainability 15(7), 5681. DOI: https://doi.org/10.3390/su15075681.

Sparks, A.N., 1979. A review of the biology of the fall armyworm. The Florida Entomologist 62(2), 82-87. DOI: https://doi.org/10.2307/3494083.

Srinivasan, T., Shanmugam, P.S., Baskaran, V., Sivakumar, S., Sathiah, N., 2023. Pest Succession and documentation of insect pests and natural enemies fauna in maize ecosystem post-fall armyworm, Spodoptera frugiperda (J.E. Smith) infestation. Agricultural Mechanization in Asia 54(3), 12311-12318.

Srinivasan, R., Uthanasamy, S., 2006. Temporal variation in expression of toxicity in transgenic cottons against bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Indian Journal of Agricultural Sciences 76(2), 114-116.

Steinhaus, E.A., 1951. Possible use of Bacillus thuringiensis Berliner as an aid in the biological control of the alfalfa caterpillar. Hilgardia 20(18), 359-381. DOI: https://doi.org/10.3733/hilg.v20n18p359.

Suby, S.B., Soujanya, P.L., Yadava, P., Patil, J., Subaharan, K., Prasad, G.S., Babu, K.S., Jat, S.L., Yathish, K.R., Vadassery, J., Kalia, V.K., Bakthavatsalam, N., Sekhar, J.C., Rakshit, S., 2020. Invasion of fall armyworm (Spodoptera frugiperda) in India: Nature, distribution, management and potential impact. Current Science 119 (1), 44-51.

Swamy, H.M.M., Asokan, R., Mahmood, R., Nagesha, S.N., 2013. Molecular characterization and genetic diversity of insecticidal crystal protein genes in native Bacillus thuringiensis isolates. Current Microbiology 66(4), 323-330. DOI: https://doi.org/10.1007/s00284-012-0273-6.

Tabashnik, B.E., Fabrick, J.A., Carrière, Y., 2023. Global patterns of insect resistance to transgenic Bt crops: The first 25 years. Journal of Economic Entomology 116(2), 297-309. DOI: https://doi.org/10.1093/jee/toac183.

Tavares, C.S., Santos-Amaya, O.F., Oliveira, E.E., Paula-Moraes, S.V., Pereira, E.J.G., 2021. Facing Bt toxins growing up: Developmental changes of susceptibility to Bt corn hybrids in fall armyworm populations and the implications for resistance management. Crop Protection 146, 105664. DOI: https://doi.org/10.1016/j.cropro.2021.105664.

Thanki, K.V., Patel, G.P., Patel, J.R., 2003. Population dynamics of Spodoptera litura on castor, Ricinus communis. Indian Journal of Entomology 65(3), 347-350.

Udayasuriyan, V., Nakamura, A., Mori, H., Masaki, H., Uozumi, T., 1994. Cloning of a new cryIA (a) gene from Bacillus thuringiensis strain FU-2-7 and analysis of chimaeric CryIA (a) proteins for toxicity. Bioscience, Biotechnology and Biochemistry 58(5), 830-835. DOI: https://doi.org/10.1271/bbb.58.830.

Velivelli, S.L.S., De Vos, P., Kromann, P., Declerck, S., Prestwich, B.D., 2014. Biological control agents: From field to market, problems and challenges. Trends in Biotechnology 32(10), 493-496. DOI: https://doi.org/10.1016/j.tibtech.2014.07.002.

Vennila, S., Zadda, K., Chandra, P., Nisar, S., 2020. Status of pod borer Helicoverpa armigera (Hubner) pigeonpea and its association with climatic variations at a hot semi-arid eco-region of Southern India. Annals of Plant Protection Sciences 28(3), 207-212. DOI: https://doi.org/10.5958/0974-0163.2020.00055.5.

Vidal-Quist, J.C., Castanera, P., González-Cabrera, J., 2009. Diversity of Bacillus thuringiensis strains isolated from citrus orchards in Spain and evaluation of their insecticidal activity against Ceratitis capitata. Journal of Microbiology and Biotechnology 19(8), 749-759.

Vijayalakshmi, P., Vijayalakshmi, T., Naidu, L.N., 2016. Evaluation of certain insecticide molecules against chilli pod borer, Spodoptera litura in Andhra Pradesh. The Journal of Research ANGRAU 44(1&2), 26-30.

Vinga, S., 2014. Editorial: Alignment-free methods in computational biology. Briefings in Bioinformatics 15(3), 341-342. DOI: https://doi.org/10.1093/bib/bbu005.

Yu, Z., Xiong, J., Zhou, Q., Luo, H., Hu, S., Xia, L., Sun, M., Li, L., Yu, Z., 2015. The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla. Journal of Invertebrate Pathology 125, 73-80. DOI: https://doi.org/10.1016/j.jip.2014.12.011.

Zhang, D., Wang, H., Ji, X., Wang, K., Wang, D., Qiao, K., 2017. Effect of abamectin on the cereal cyst nematode (CCN, Heterodera avenae) and wheat yield. Plant Disease 101(6), 973-976. DOI: https://doi.org/10.1094/PDIS-10-16-1441-RE.

Zi-Quan, Y., Qian-Lan, W., Bin, L., Xue, Z., Zi-Niu, Y., Ming, S., 2008. Bacillus thuringiensis crystal protein toxicity against plant-parasitic nematodes. Chinese Journal of Agricultural Biotechnology 5(1), 13-17. DOI: https://doi.org/10.1017/S1479236208002003.