
Characterization and Evaluation of Endophytic Bacteria from the Ethno-Medicinal Plant Gynura cripidioides (Gende) of North Eastern Himalayan Region, India
Pramod Kumar Pandey*
Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam (786 004), India
College of Agriculture, Central Agricultural University, Kyrdemkulai, Meghalaya (793 105), India
Raj Narain Singh Yadav
Dept. of Life Sciences, Dibrugarh University, Dibrugarh, Assam (786 004), India
Ramkrishna Samanta
Dept. of Life Sciences, Dibrugarh University, Dibrugarh, Assam (786 004), India
Siddhartha Singh
College of Horticulture & Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh (791 102), India
Amit Kumar Singh
College of Horticulture & Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh (791 102), India
Aditya Pratap Singh
Dept. of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal (741 252), India
DOI: https://doi.org/10.54083/PHA/2.4.2024/123-130
Keywords: Bio-control, Endophytes, IAA production, PGPR, Siderophore production
Abstract
Bacterial endophytes are bacteria that reside internally within plants, flourishing in a distinct environment that protects them from external adversities and changes in environmental circumstances, unlike microbes that live outside. Their entry into plant tissues occurs through specific ‘hotspot’ areas, such as the root system. After gaining entry, the plants use a variety of secondary metabolites, structural component synthesis, plant immunity, resource competition with pathogens, antioxidant activities and phenylpropanoid metabolism to reduce the effects of both biotic and abiotic stressors. From the Gende (Gynura cripidioides; Family: Asteraceae) that was removed from the Pasighat region in the East Siang District of Arunachal Pradesh, India, endophytic bacteria were recovered. This study set out to evaluate and characterise endophytic bacteria for their cpability to enhance plant growth through various means, including phosphate solubilization, IAA production, siderophore production, growth on nitrogen-free media, exo-polysaccharide production, in-vitro evaluation and antagonistic activity analysis.
Downloads
not found
Reference
Aneja, K.R., 2005. Biochemical activities of microorganisms. In: Experiments in Microbiology, Plant Pathology and Biotechnology, 4th Edition. New Age International Publishers, New Delhi. pp. 245-275.
Anu Rajan, S., 2012. Microbial endophytes of crop plants and their role in plant growth promotion. PhD Thesis, University of Agricultural Sciences, Bangalore. p. 266. URL: http://hdl.handle.net/10603/6129.
Cappuccino, J.G., Sherman, N., 1996. Microbiology: A Laboratory Manual, 4th Edition. The Benjamin/Cunning Publishing Company Inc., Menlo Park, California. p. 477.
Compant, S., Duffy, B., Nowak, J., Clement, C., Barka, E.A., 2005. Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Applied and Environmental Microbiology 71(9), 4951-4959. DOI: https://doi.org/10.1128/AEM.71.9.4951-4959.2005.
Dennis, C., Webster, J., 1971. Antagonistic properties of species groups of Trichoderma: I. Production of non-volatile antibiotics. Transactions of the British Mycological Society 57(1), 25-39. DOI: https://doi.org/10.1016/S0007-1536(71)80077-3.
Dong, Z., Heydrich, M., Bernard, K., McCully, M.E., 1995. Further evidence that N2 fixing endophytic bacterium from the intercellular spaces of sugarcane stems in Acetobacter diazotrophicus. Applied and Environmental Microbiology 61(5), 1843-1846. DOI: https://doi.org/10.1128/aem.61.5.1843-1846.1995.
Hallman, J., Quadt-Hallman, A., Mahafee, W.F., Kloepper, J.W., 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology 43(10), 895-914. DOI: https://doi.org/10.1139/m97-131.
James, E.K., 2000. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research 65(2-3), 197-209. DOI: https://doi.org/10.1016/S0378-4290(99)00087-8.
Mehta, S., Nautiyal, C.S., 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology 43, 51-56. DOI: https://doi.org/10.1007/s002840010259.
Newman, L.A., Reynolds, C.M., 2005. Bacteria and phytoremediation: New uses for endophytic bacteria in plants. Trends in Biotechnology 23(1), 6-8. DOI: https://doi.org/10.1016/j.tibtech.2004.11.010.
Pandey, P.K., Samanta, R., Yadav, R.N.S., 2015. Plant beneficial endophytic bacteria from the Ethnomedicinal Mussaenda roxburghii (Akshap) of Eastern Himalayan Province, India. Advances in Biology 2015, 580510. DOI: https://doi.org/10.1155/2015/580510.
Pandey, P.K., Samanta, R., Yadav, R.N.S., 2016. Functional attributes of Solanum kurzii associated bacterial endophytes for plant growth promotion. Asian Journal of Microbiology Biotechnology and Environmental Sciences 18(2), 423-436.
Petrini, O., 1991. Fungal endophytes in the tree leaves. In: Microbial Ecology of Leaves. (Eds.) Andrews, J.H. and Hirano, S.S. Brock/Springer Series in Contemporary Bioscience. Springer, New York. pp. 179-197. DOI: https://doi.org/10.1007/978-1-4612-3168-4_9.
Schwyn, B., Neilands, J.B., 1987. Universal assay for detection and determination of siderophores. Analytical Biochemistry 160(1), 47-56. DOI: https://doi.org/10.1016/0003-2697(87)90612-9.
Seeley, H.W., Van Demark, P.J., 1981. Microbes in Action: A Laboratory Manual of Microbiology, 3rd Edition. Freeman and Company, San Francisco, USA. p. 385.
Stuart, C.A., Van Stratum, E., Rustigian, R., 1945. Further studies on urease production by Proteus and related organisms. Journal of Bacteriology 49(5), 437-444. DOI: https://doi.org/10.1128/jb.49.5.437-444.1945.
Sturz, A.V., Christie, B.R., 1996. Endophytic bacteria of red clover as agents of allelopathic clover-maize syndromes. Soil Biology and Biochemistry 28(4-5), 583-588. DOI: https://doi.org/10.1016/0038-0717(95)00168-9.
Sturz, A.V., Christie, B.R., Matheson, B.G., Arsenault, W.J., Buchanan, N.A., 1999. Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathology 48(3), 360-369. DOI: https://doi.org/10.1046/j.1365-3059.1999.00351.x.
Sziderics, A.H., Rasche, F., Trognitz, F., Sessitsch, A., Wilhelm, E., 2007. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Canadian Journal of Microbiology 53(11), 1195-1202. DOI: https://doi.org/10.1139/W07-082.
Wang, Z., Zhang, H., Liu, L., Li, S., Xie, J., Xue, X., Jiang, Y., 2022. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiology 22(1), 296. DOI: https://doi.org/10.1186/s12866-022-02715-7.
Weyens, N., Schellingen, K., Beckers, B., Janssen, J., Ceulemans, R., van der Lelie, D., Taghavi, S., Carleer, R., Vangronsveld, J., 2013. Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. Journal of Soils and Sediments 13, 176-188. DOI: https://doi.org/10.1007/s11368-012-0582-1.
Wilhelm, E., Arthofer, W., Schafleitner, R., 1997. Bacillus subtilis, an endophyte of chestnut (Castanea sativa), as antagonist against chestnut blight (Cryphonectria parasitica). In: Pathogen and Microbial Contamination Management in Micropropagation. (Ed.) Cassells, A.C. Kluwer Academic Publishers, Dortrecht, Netherlands. pp. 331-337.