Clonal Reproduction in Vertebrates and Redefining Genetic Dead Ends of Evolution
Rekha Das*
ICAR-Research Complex for North Eastern Hill Region, Tripura Centre, Tripura (799 210), India
Himanshu Priyadarshi
College of Fisheries, under CAU (Imphal), Lembucherra, Tripura (799 210), India
Kouberi Nath
ICAR-Research Complex for North Eastern Hill Region, Tripura Centre, Tripura (799 210), India
Asit Chakrabarti
ICAR-Research Complex for North Eastern Hill Region, Tripura Centre, Tripura (799 210), India
Bikash Shil
ICAR-Research Complex for North Eastern Hill Region, Tripura Centre, Tripura (799 210), India
DOI: https://doi.org/10.54083/IF/10.1.2025/01-05
Keywords: Evolution, Genetic variation, Heterozygosity, Recombination, Vertebrate
Abstract
The phenomenon of clonal reproduction in animals in general and revival of clonality in Self Incompatible (SI) animal species in particular are of immense interest to ecology, evolutionary studies and conservation genetics. Clonal reproduction in metazoan species occurs by various mechanisms, including parthenogenesis, hybridogenesis and self fertilization. The offspring generated by these mechanisms are true copies of their single parent due to lack of genetic recombination and earlier studies have observed compromised variation at population level in species that have an exclusively clonal mode of reproduction. Since the undisputed role of genetic variability acting as a raw material for natural selection and thereby for evolution is known, the successful persistence of these species and populations for such long periods of time in evolutionary history is baffling. In recent years significant levels of genetic variation have been encountered in several populations of clonally reproducing animals through more informative and highly polymorphic molecular marker data. Various strategies have been suggested to be in play in the process of maintaining variability in population and preservation of evolutionary potential of the species. It appears that populations of all clonal species uses a combination of strategies such as inter-population migrations, occasional out-crossings and hybridization with closely related species to prevent severe inbreeding and loss of viability. Interestingly, several SI species have recently been documented to resort to parthenogenetic reproduction in captivity. These observations have tremendous significance to various practical aspects of genetics such as conservation, biological containment and clinical study of numerical aberrations of chromosomes.
Downloads
not found
Reference
Adachi-Hagimori, T., Miura, K., Stouthamer, R., 2008. A new cytogenetic mechanism for endosymbiont induced parthenogenesis in Hymenoptera. Proceedings of the Royal Society 275, 2667-2673. DOI: https://doi.org/10.1098/rspb.2008.0792.
Allard, R.W., Babbel, G.R., Clegg, M.T., Kahler, A.L., 1972. Evidence for coadaptation in Avena barbata. In: Proceedings of the National Academy of Science, USA 69(10), 3043-3048. DOI: https://doi.org/10.1073/pnas.69.10.3043.
Avise, J.C., Tatarenkov, A., 2012. Allard’s argument versus Baker’s contention for the adaptive significance of selfing in a hermaphroditic fish. PNAS 109(46), 18862-18867. DOI: https://doi.org/10.1073/pnas.1217202109.
Badaeva, T.N., Malysheva, D.N., Korchagin, V.I., Ryskov, A.P., 2008. Genetic variation and de novo mutations in the parthenogenetic Caucasian rock lizard Darevskia unisexualis. PLoS One 3(7), e2730. DOI: https://doi.org/10.1371/journal.pone.0002730.
Baker, H.G., 1955. Self-compatibility and establishment after “long-distance” dispersal. Evolution 9(3), 347-349. DOI: https://doi.org/10.1111/j.1558-5646.1955.tb01544.x.
Bronham, L., Eyre-Walker, A., Smith, N.H., Smith, J.M., 2003. Mitochondrial Steve: Paternal inheritance of mitochondrial genome in humans. Trends in Ecology and Evolution 18(1), 2-4. DOI: https://doi.org/10.1016/S0169-5347(02)00009-5.
Booth, W., Johnson, D.H., Moore, S., Schal, C., Vargo, E.L., 2011. Evidence for viable, non-clonal but fatherless Boa constrictors. Biology Letters 7(2), 253-256. DOI: https://doi.org/10.1098/rsbl.2010.0793.
Chapman, D.D., Firchau, B., Shivji, M.S., 2008. Parthenogenesis in a large‐bodied requiem shark, the blacktip Carcharhinus limbatus. Journal of Fish Biology 73(6), 1473-1477. DOI: https://doi.org/10.1111/j.1095-8649.2008.02018.x.
Dalziel, A.C., Tirbhowan, S., Drapeau, H.F., Power, C., Jonah, L.S., Gbotsyo, Y.A., Cote, A.M.D., 2020. Using asexual vertebrates to study genome evolution and animal physiology: Banded (Fundulus diaphanus) x Common Killifish (F. heteroclitus) hybrid lineages as a model system. Evolutionary Applications 13(6), 1214-1239. DOI: https://doi.org/10.1111/eva.12975.
Dotaniya, M.L., Kumar, K., Dotaniya, C.K., Meen, H.M., Doutaniya, R.K., Meena, A., Singh, H., 2024. Role of artificial intelligence in natural resource management. Biotica Research Today 6(8), 410-413.
Eads, B.D., Colbourne, J.K., Bohuski, E., Andrews, J., 2007. Profiling sex-biased gene expression during parthenogenetic reproduction in Daphnia pulex. BMC Genomics 8, 464. DOI: https://doi.org/10.1186/1471-2164-8-464.
Fournier, D., Estoup, A., Orivel, J., Foucaud, J., Jourdan, H., Le Breton, J., Keller, L., 2005. Clonal reproduction by males and females in the little fire ant. Nature 435, 1230-1234. DOI: https://doi.org/10.1038/nature03705.
Groot, T.V.M., Bruins, E., Breeuwer, J.A.J., 2003. Molecular genetic evidence for parthenogenesis in the Burmese python, Python molurus bivittatus. Heredity 90, 130-135. DOI: https://doi.org/10.1038/sj.hdy.6800210.
Hales, D.F., Wilson, A.C.C., Sloane, M.A., Simon, J.C., Legallic, J.F., Sunnucks, P., 2002. Lack of detectable genetic recombination on the X chromosome during the parthenogenetic production of female and male aphids. Genetical Research 79(3), 203-209. DOI: https://doi.org/10.1017/S0016672302005657.
Hedrick, P.W., 1994. Purging inbreeding depression and the probability of extinction: full-sib mating. Heredity 73, 363-372. DOI: https://doi.org/10.1038/hdy.1994.183.
Hedrick, P.W., 2007. Virgin birth, genetic variation and inbreeding. Biology Letters 3, 715-716. DOI: https://doi.org/10.1098/rsbl.2007.0293.
Hubbs, C.L., Hubbs, L.C., 1932. Apparent parthenogenesis in nature, in a form of fish of hybrid origin. Science 76(1983), 628-630. DOI: https://doi.org/10.1126/science.76.1983.628.
Kvist, L., Martens, J., Nazarenko, A.A., Orell, M., 2003. Paternal leakage of mitochondria in the Great Tit (Parus major). Molecular Biology of Evolution 20(2), 243-247. DOI: https://doi.org/10.1093/molbev/msg025.
Leniaud, L., Darras, H., Boulay, R., Aron, S., 2012. Social hybridogenesis in the clonal ant Cataglyphis hispanica. Current Biology 22(13), 1188-1193. DOI: https://doi.org/10.1016/j.cub.2012.04.060.
Lu, M., Zhou, L., Gui, J.F., 2024. Evolutionary mechanisms and practical significance of reproductive success and clonal diversity in unisexual vertebrate polyploids. Science China Life Sciences 67, 449-459. DOI: https://doi.org/10.1007/s11427-023-2486-2. [Online: 29 December, 2023]
Maccari, M., Amat, F., Gomez, A., 2013. Origin and genetic diversity of diploid parthenogenetic artemia in Eurasia. PLoS ONE 8(12), e83348. DOI: https://doi.org/10.1371/journal.pone.0083348.
Mackeiwicz, M., Tatarenkov, A., Taylor, D.S., Turner, B.J., Avise, J.C., 2006. Extensive outcrossing and androdioecy in a vertebrate species that otherwise reproduces as a self-fertilizing hermaphrodite. PNAS 103(26), 9924-9928. DOI: https://doi.org/10.1073/pnas.060384710.
Martin, P., Kohlmann, K., Scholtz, G., 2007. The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Die Naturwissenschaften 94(10), 843-846. DOI: https://doi.org/10.1007/s00114-007-0260-0.
Menken, S.B.J., Weibosch-Steeman, M., 1988. Clonal diversity, population structure and dispersal in the parthenogenetic moth Ectoedimia argyropeza. Entomologia Experimentalis et Applicata 49, 141-152. DOI: https://doi.org/10.1111/j.1570-7458.1988.tb02485.x.
Molloy, P.P., Gage, M.J.G., 2006. Evolution: Vertebrate reproductive strategies get mixed up. Current Biology 16(20), R876-R879. DOI: https://doi.org/10.1016/j.cub.2006.09.023.
Neaves, W.B., Baumann, P., 2011. Unisexual reproduction among vertebrates. Trends in Genetics 27(3), 81-88. DOI: https://doi.org/10.1016/j.tig.2010.12.002.
Paland, S., Lynch, M., 2006. Transitions to asexuality result in excess amino acid substitutions. Science 311(5763), 990-992. DOI: https://doi.org/10.1126/science.1118152.
Pearcy, M., Aron, S., Doums, C., Keller, L., 2004. Conditional use of sex and parthenogenesis for worker and queen production in ants. Science 306(5702), 1780-1783. DOI: https://doi.org/10.1126/science.1105453.
Rabeling, C., Kronaeur, D.J.C., 2013. Thelytokous parthenogenesis in Eusocial Hymenoptera. Annual Review of Entomology 58, 273-292. DOI: https://doi.org/10.1146/annurev-ento-120811-153710.
Robinson, D.P., Baverstock, W., Al‐Jaru, A., Hyland, K., Khazanehdari, K.A., 2011. Annually recurring parthenogenesis in a zebra shark Stegostoma fasciatum. Journal of Fish Biology 79(5), 1376-1382. DOI: https://doi.org/10.1111/j.1095-8649.2011.03110.x.
Sabelis, M.W., Nagelkerke, C.J., 1988. Evolution of pseudo-arrhenotoky. Experimental & Applied Acarology 4, 301-318. DOI: https://doi.org/10.1007/BF01196192.
Saini, D.R., Prakash, P., Kumar, S., Maiti, I. Kumar, K., 2024. Growing smarter: The role of artificial intelligence in agriculture. Biotica Research Today 6(8), 406-409.
Sarvella, P., 1974. Environmental effects on a parthenogenetic line of chickens. Poultry Science 53(1), 273-279. DOI: https://doi.org/10.3382/ps.0530273.
Sato, A., Satta, Y., Figueroe, F., Mayor, W.E., Zaleska-Rutzinska, Z., Toyosawa, S., Travis, J., Klein, J., 2002. Persistence of Mhc heterozygosity in homozygous clonal killifish, Rivulus marmoratus: Implications for the origin of hermaphroditism. Genetics 162(4), 1791-1803. DOI: https://doi.org/10.1093/genetics/162.4.1791.
Scholtz, G., Braband, A., Tolley, L., Reiman, A., Mittmann, B., Lukhaup, C., Steuerwald, F., Vogt, G., 2003. Parthenogenesis in an outsider crayfish. Nature 421, 806. DOI: https://doi.org/10.1038/421806a.
Schwartz, M., Vissing, J., 2002. Paternal inheritance of mitochondrial DNA. The New England Journal of Medicine 347(8), 576-580. DOI: https://doi.org/10.1056/NEJMoa020350.
Stouthamer, R., Luck, R.F., Hamilton, W.D., 1990. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. PNAS 87(7), 2424-2427. DOI: https://doi.org/10.1073/pnas.87.7.2424.
Tatarenkov, A., Ring, B.C., Elder, J.F., Bechler, D.L., Avise, J.C., 2010. Genetic composition of laboratory stocks of the self-fertilizing fish Kryptolebias marmoratus: A valuable resource for experimental research. PLoS ONE 5(9), e12863. DOI: https://doi.org/10.1371/journal.pone.0012863.
Turner, B.J., Elder, Jr. J.F., Laghlin, T.F., Davis, W.P., Taylor, D.S., 1992. Extreme clonal diversity and divergence in populations of a selling hermaphroditic fish. Proceedings of National Academy of Sciences, USA 89, 10643-10647. DOI: https://doi.org/10.1073/pnas.89.22.10643.
Turner, B.J., Fisher, M.T., Taylor, D.S., Davis, W.P., Jarrett, B.L., 2006. Evolution of ‘maleness’ and outcrossing in a population of the self-fertilizing killifish, Kryptolebias marmoratus. Evolutionary Ecology Research 8, 1475-1486.
Vrijenhoek, R.C., Pfeiler, E., 1997. Differential survival of sexual and asexual Poeciliopsis during environmental stress. Evolution 51(5), 1593-1600. DOI: https://doi.org/10.1111/j.1558-5646.1997.tb01482.x.