Comparative Phytochemical Profiling and FT-IR Analysis of Artemisia annua (L.) Varieties from Nigeria, China and Brazil: Insights into Bioactive Compounds and Functional Group Diversity
Yusuf A.M.*
Dept. of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria
Umar A.M.
Dept. of Biological Sciences, Faculty of Life Sciences, Federal University Dutsinma, Katsina State (PMB 5001), Nigeria
Eberemu N.C.
Dept. of Biological Sciences, Faculty of Life Sciences, Federal University Dutsinma, Katsina State (PMB 5001), Nigeria
Auta, T.
Dept. of Biological Sciences, Faculty of Life Sciences, Federal University Dutsinma, Katsina State (PMB 5001), Nigeria
Wagini, N.H.
Dept. of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria
Suleiman, M.
Dept. of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria
Badamasi M.
Dept. of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria
Zainab A. Yar’adua
Dept. of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria
Habib A.
Dept. of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria
Gidado, S.M.
Dept. of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria
Musa, D.D.
Dept. of Biological Sciences, Faculty of Life Sciences, Federal University Dutsinma, Katsina State (PMB 5001), Nigeria
Matazu, N.U.
Dept. of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria
DOI: https://doi.org/10.54083/ResBio/6.2.2024/74-86
Keywords: A. annua, Bioactive compounds, Functional groups, Pharmacological potential, Phytochemical screening
Abstract
This study presents a comprehensive phytochemical screening of three varieties of A. annua sourced from Nigeria, China and Brazil. Utilizing GC-MS and FT-IR techniques, the phytochemical composition and functional groups of each variety were analyzed. GC-MS analysis identified 38, 31 and 48 compounds in the Nigerian, Brazilian and Chinese varieties, respectively, highlighting a diverse array of bioactive compounds. FT-IR analysis revealed complex phytochemical profiles for the Brazilian and Nigerian varieties, indicating the existence of aromatics, alkanes, hydroxyl groups’, ketones, alkenes and esters. The FT-IR spectra for the Nigerian and Chinese varieties indicated additional functional groups, including nitro compounds and thiols, not observed in the Brazillian variety. Despite these differences, all varieties exhibited common functional groups’ like C-O, C-H and C=O stretches, suggesting that hydrocarbons, oxygen containing compounds and carbonyl groups’ were present. This comparative research offers significant understanding into the diversity of phytochemicals present in A. annua across different geographical locations, underpinning its potential pharmacological and medicinal applications.
Downloads
not found
Reference
Ailli, A., Handaq, N., Touijer, H., Gourich, A.A., Drioiche, A., Zibouh, K., Eddamsyry, B., El Makhoukhi, F., Mouradi, A., Jardan, Y.A.B., Bourhia, M., Elomri, A., Zair, T., 2023. Phytochemistry and biological activities of essential oils from six aromatic medicinal plants with cosmetic properties. Antibiotics 12(4), 721. DOI: https://doi.org/10.3390/antibiotics12040721.
Anibogwu, R., De Jesus, K., Pradhan, S., Pashikanti, S., Mateen, S., Sharma, K., 2021. Extraction, isolation and characterization of bioactive compounds from Artemisia and their biological significance: A review. Molecules 26(22), 6995. DOI: https://doi.org/10.3390/molecules26226995.
Atawodi, S.E., Adejo, G.O., Olowoniyi, O.D., Liman, M.L., 2017. Biological, pharmacognostic and phytochemical review of some cultivated medicinal plants of Nigeria. In: Medicinal and Aromatic Plants of the World-Africa, Volume 3. (Eds.) Neffati, M., Najjaa, H. and Máthé, Á. Springer, Dordrecht. pp. 311-344. DOI: https://doi.org/10.1007/978-94-024-1120-1_12.
Azad, A.K., Mohamed, F., 2023. Determination of total phenolic and flavonoid content and evaluation of antioxidant activities of Cuscuta reflexa. Universal Journal of Pharmaceutical Research 8(6), 8-13. DOI: http://doi.org/10.22270/ujpr.v8i6.1033.
Batiha, G.E.S., Olatunde, A., El-Mleeh, A., Hetta, H.F., Al-Rejaie, S., Alghamdi, S., Zahoor, M., Beshbishy, A.M., Murata, T., Zaragoza-Bastida, A., Rivero-Perez, N., 2020. Bioactive compounds, pharmacological actions and pharmacokinetics of wormwood (Artemisia absinthium). Antibiotics 9(6), 353. DOI: https://doi.org/10.3390/antibiotics9060353.
Bauman, D.E., Lock, A.L., Conboy Stephenson, R., Linehan, K., Ross, R.P., Stanton, C., 2020. Conjugated linoleic acid: Biosynthesis and nutritional significance. In: Advanced Dairy Chemistry: Lipids, Volume 2. (Eds.) McSweeney, P.L.H., Fox, P.F. and O'Mahony, J.A. Springer, Cham. pp. 67-106. DOI: https://doi.org/10.1007/978-3-030-48686-0_3.
Bernardi, D.M., Marchi, J.P., Araújo, C.S.A., do Nascimento, V.R., de Souza Lima, D., Wietzikoski, S., Ferro, M.M., Miyoshi, E., Lívero, F.A.R., Seixas, F.A.V., Lovato, E.C.W., 2021. Dopamine docking studies of biologically active metabolites from Curcuma longa L. Research, Society and Development 10(7), e59910716992-e59910716992. DOI: https://doi.org/10.33448/rsd-v10i7.16992.
Das, A., Pathak, K., Pathak, M.P., Saikia, R., Gogoi, U., Acharya, N.S., 2023. Potential of herbal drug delivery in treating malaria. In: Malarial Drug Delivery Systems: Advances in Treatment of Infectious Diseases. (Eds.) Shegokar, R. and Pathak, Y. Springer, Cham. pp. 333-357. DOI: https://doi.org/10.1007/978-3-031-15848-3_15.
Daskum, A.M., Chessed, G., Qadeer, M.A., Ling, L.Y., 2020. Phytochemical screening, Gas Chromatography Mass Spectroscopy (GC-MS) and in vitro antiplasmodial analysis of Senna siamea leaves as antimalarial, Yobe State, Nigeria. Nigerian Journal of Parasitology 41(1), 60-67. DOI: https://doi.org/10.4314/njpar.v41i1.10.
Ekiert, H., Świątkowska, J., Klin, P., Rzepiela, A., Szopa, A., 2021. Artemisia annua - Importance in traditional medicine and current state of knowledge on the chemistry, biological activity and possible applications. Planta Medica 87(08), 584-599. DOI: https://doi.org/10.1055/a-1345-9528.
Ekpiken, E.S., Ekong, U.S., Upula, S.A., Oka, I.A., Ekong, M.O., 2023. Antibacterial activities of leaves extracts of X. aethiopica against some Enterobacteriaceae and GC-MS analysis of phytoconstituents. World Journal of Pharmaceutical and Medical Research 9(8), 10-18.
Fayaz, F., Roodsari, S.R., Gachkar, L., Pourkaveh, B., Safaei, H.G., 2011. The antimicrobial activity of Ferula gummosa on bacterial strains isolated from patients with gastroenteritis. Iraninan Journal of Clinical Infectious Diseases 6(Suppl.), 21-24.
Fatima, S., Gupta, P., Sharma, S., Sharma, A., Agarwal, S.M., 2020. ADMET profiling of geographically diverse phytochemical using chemoinformatic tools. Future Medicinal Chemistry 12(1), 69-87. DOI: https://doi.org/10.4155/fmc-2019-0206.
Ferreira, J.F.S., Laughlin, J.C., Delabays, N., de Magalhães, P.M., 2005. Cultivation and genetics of Artemisia annua L. for increased production of the antimalarial artemisinin. Plant Genetic Resources 3(2), 206-229. DOI: https://doi.org/10.1079/PGR200585.
Fialová, S.B., Rendeková, K., Mučaji, P., Nagy, M., Slobodníková, L., 2021. Antibacterial activity of medicinal plants and their constituents in the context of skin and wound infections, considering European legislation and folk medicine - A review. International Journal of Molecular Sciences 22(19), 10746. DOI: https://doi.org/10.3390/ijms221910746.
Ge, X., Liang, Q., Long, Y., Shen, H., Zhang, Q., Sun, Z., Li, W., 2022. Assessment of fresh Alpinia galanga (A. galanga) drying techniques for the chemical composition of essential oil and its antioxidant and biological activity. Food Chemistry 392, 133314. DOI: https://doi.org/10.1016/j.foodchem.2022.133314.
Hou, T., Sana, S.S., Li, H., Xing, Y., Nanda, A., Netala, V.R., Zhang, Z., 2022. Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. Food Bioscience 47, 101716. DOI: https://doi.org/10.1016/j.fbio.2022.101716.
Ikhane, A.O., Sithole, Z.S., Cele, N.D., Osunsanmi, F.O., Mosa, R.A., Opoku, A.R., 2024. In vitro antioxidant and in silico evaluation of the anti-β-lactamase potential of the extracts of Cylindrospermum alatosporum NR125682 and Loriellopsis cavenicola NR117881. Antioxidants 13(5), 608. DOI: https://doi.org/10.3390/antiox13050608.
Ishaq, K., Ahmad, T., Rajput, M., Maqbool, M., Gupta, A., Imran, M., Machtinger, E.T., 2023. Parasitic Control Strategies: Bioactive Crops and Nutrition. Chapter 9. In: Parasitism and Parasitic Control in Animals: Strategies for the Developing World. (Eds.) Rizwan, H.M. and Sajid, M.S. CAB International. pp. 136-150. DOI: https://doi.org/10.1079/9781800621893.0009.
Kawo, A.H., Kwa, A.M., 2011. Phytochemical screening and antibacterial activity of the aqueous extracts and fractions of ethanolic extracts of Lawsonia inermis leaf. International Research Journal of Microbiology 2(12), 510-516.
Kumar, N., Devi, R., Pratibha, Kumar, S., Saurav, Pathania, M.S., Kumari, A., 2024. A review on cytomorphological, medicinal, phytochemical and pharmacological potential of common weed of wheat crop of Himachal Pradesh: Fumaria parviflora. Plant Health Archives 2(1), 26-30. DOI: https://doi.org/10.54083/PHA/2.1.2024/26-30.
Li, J., Zhang, C., Gong, M., Wang, M., 2018. Combination of artemisinin-based natural compounds from Artemisia annua L. for the treatment of malaria: Pharmacodynamic and pharmacokinetic studies. Phytotherapy Research 32(7), 1415-1420. DOI: https://doi.org/10.1002/ptr.6077.
Liu, H., Tian, X., Zhang, Y., Wang, C., Jiang, H., 2013. The discovery of A. annua L. in the Shengjindian cemetery, Xinjiang, China and its implications for early uses of traditional Chinese herbal medicine qinghao. Journal of Ethnopharmacology 146(1), 278-286. DOI: https://doi.org/10.1016/j.jep.2012.12.044.
Liu, X., Renzengwangdui, Tang, S., Zhu, Y., Wang, M., Cao, B., Wang, J., Zhao, B., Lu, H., 2023. Metabolomic analysis and antibacterial and antioxidant activities of three species of Artemisia plants in Tibet. BMC Plant Biology 23, 208. DOI: https://doi.org/10.1186/s12870-023-04219-6.
Mancuello, C., Maubet, Y., Cristaldo, E., Veloso, B., Robledo, G., Traba, A., Marín, L., Gayoso, E., Campi, M., 2024. Oudemansiella cubensis an edible mushroom from the neotropics with biological and nutritional benefits. Natural Resources for Human Health 4(3), 257-268. DOI: https://doi.org/10.53365/nrfhh/189170.
Michalak, M., Pierzak, M., Kręcisz, B., Suliga, E., 2021. Bioactive compounds for skin health: A review. Nutrients 13(1), 203. DOI: https://doi.org/10.3390/nu13010203.
Namasudra, S., Phukan, P., Bawari, M., 2021. GC-MS analysis of bioactive compounds and safety assessment of the ethanol extract of the barks of Holarrhena pubescens Wall. ex.G.Don (family Apocynaceae): Sub-acute toxicity studies in Swiss albino mice. Pharmacognosy Journal 13(1), 162-171. DOI: https://doi.org/10.5530/pj.2021.13.23.
Nandiyanto, A.B.D., Oktiani, R., Ragadhita, R., 2019. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology 4(1), 97-118. DOI: https://doi.org/10.17509/ijost.v4i1.15806.
Nedeljković, N., Dobričić, V., Bošković, J., Vesović, M., Bradić, J., Anđić, M., Kočović, A., Jeremić, N., Novaković, J., Jakovljević, V., Vujić, Z., Nikolić, M., 2023. Synthesis and investigation of anti-inflammatory activity of new thiourea derivatives of naproxen. Pharmaceuticals 16(5), 666. DOI: https://doi.org/10.3390/ph16050666.
Nsofor, W.N., Nwaoguikpe, R.N., Ujowundu, F.N., Keke, C.O., Uba, M.T., Edom, C.V., 2023. Phytochemical, GC-MS, FTIR and amino acid profile of methanol extract of Tetrapleura tetraptera fruit. Journal of Drug Delivery and Therapeutics 13(2), 61-69. DOI: https://doi.org/10.22270/jddt.v13i2.5739.
Nurlybekova, A., Kudaibergen, A., Kazymbetova, A., Amangeldi, M., Baiseitova, A., Ospanov, M., Aisa, H.A., Ye, Y., Ibrahim, M.A., Jenis, J., 2022. Traditional use, phytochemical profiles and pharmacological properties of Artemisia genus from Central Asia. Molecules 27(16), 5128. DOI: https://doi.org/10.3390/molecules27165128.
Nyalo, P.O., 2022. In vitro antibacterial and antioxidant activities of ethyl acetate extracts of Xerophyta spekei (Baker), Senna singueana (Delile) and Grewia tembensis (Fresen). M.Sc. Thesis (Biotechnology), Kenyatta University, Nairobi, Kenya. p. 152. URL: http://ir-library.ku.ac.ke/handle/123456789/24859.
Okhale, S.E., Egharevba, H.O., Imoisi, C., Ibrahim, J.A., Jegede, I.A., 2022. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of the essential oil from Nigerian Artemisia annua L. at different growth stages. Nature and Science 20(12), 49-54. DOI: https://doi.org/10.7537/marsnsj201222.07.
Oppedisano, F., Macrì, R., Gliozzi, M., Musolino, V., Carresi, C., Maiuolo, J., Bosco, F., Nucera, S., Zito, M.C., Guarnieri, L., Scarano, F., Nicita, C., Coppoletta, A.R., Ruga, S., Scicchitano, M., Mollace, R., Palma, E., Mollace, V., 2020. The anti-inflammatory and antioxidant properties of n-3 PUFAs: Their role in cardiovascular protection. Biomedicines 8(9), 306. DOI: https://doi.org/10.3390/biomedicines8090306.
Maji, S.R., Roy, C., Sinha, S.K., 2023. Gas chromatography-mass spectrometry (GC-MS): A comprehensive review of synergistic combinations and their applications in the past two decades. Journal of Analytical Sciences and Applied Biotechnology 5(2), 72-85. DOI: https://doi.org/10.48402/IMIST.PRSM/jasab-v5i2.40209.
Riggins, C.W., Seigler, D.S., 2012. The genus Artemisia (Asteraceae: Anthemideae) at a continental crossroads: Molecular insights into migrations, disjunctions and reticulations among Old and New World species from a Beringian perspective. Molecular Phylogenetics and Evolution 64(3), 471-490. DOI: https://doi.org/10.1016/j.ympev.2012.05.003.
Sabaghi, M., Tavasoli, S., Hoseyni, S.Z., Mozafari, M.R., Degraeve, P., Katouzian, I., 2022. A critical review on approaches to regulate the release rate of bioactive compounds from biopolymeric matrices. Food Chemistry 382, 132411. DOI: https://doi.org/10.1016/j.foodchem.2022.132411.
Sadiq, A., Hayat, M.Q., Ashraf, M., 2014. Ethnopharmacology of Artemisia annua L.: A Review. In: Artemisia annua - Pharmacology and Biotechnology. (Eds.) Aftab, T., Ferreira, J.F.S., Khan, M.M.A. and Naeem, M. Springer, Berlin, Heidelberg. pp. 9-25. DOI: https://doi.org/10.1007/978-3-642-41027-7_2.
Sekar, K., Hari, R., Moorthy, D., Hari, R., Sampath, S., Alagasen, S., 2023. GC-MS analysis and antioxidant evaluation of ativisa root extract. Research Journal of Pharmacy and Technology 16(2), 703-708. DOI: https://doi.org/10.52711/0974-360X.2023.00120.
Shinyuy, L.M., Loe, G.E., Jansen, O., Mamede, L., Ledoux, A., Noukimi, S.F., Abenwie, S.N., Ghogomu, S.M., Souopgui, J., Robert, A., Demeyer, K., Frederich, M., 2023. Secondary metabolites isolated from Artemisia afra and Artemisia annua and their anti-malarial, anti-inflammatory and immunomodulating properties - Pharmacokinetics and pharmacodynamics: A review. Metabolites 13(5), 613. DOI: https://doi.org/10.3390/metabo13050613.
Trivedi, N.S., Thumar, J.T., 2022. Mangrove endophytic fungi: A treasure of bioactive compounds against infectious disease. Annals of Forest Research 65(1), 10908-10937.
Ungogo, M.A., Ebiloma, G.U., Ichoron, N., Igoli, J.O., de Koning, H.P., Balogun, E.O., 2020. A review of the antimalarial, antitrypanosomal and antileishmanial activities of natural compounds isolated from Nigerian flora. Frontiers in Chemistry 8, 617448. DOI: https://doi.org/10.3389/fchem.2020.617448.
Virendra, S.A., Sahu, C., Kumar, A., Chawla, P.A., 2022. Natural antioxidants as additional weapons in the fight against malarial parasite. Current Topics in Medicinal Chemistry 22(24), 2045-2067. DOI: https://doi.org/10.2174/1568026622666220504172655.
Wan, K.K., Evans-Klock, C.D., Fielder, B.C., Vosburg, D.A., 2013. Synthesis of cis-and trans-davanoids: Artemone, hydroxydavanone, isodavanone and nordavanone. Synthesis 45(11), 1541-1545. DOI: https://doi.org/10.1055/s-0033-1338429.
Wang, D., Shi, C., Alamgir, K., Kwon, S., Pan, L., Zhu, Y., Yang, X., 2022. Global assessment of the distribution and conservation status of a key medicinal plant (Artemisia annua L.): The roles of climate and anthropogenic activities. Science of the Total Environment 821, 153378. DOI: https://doi.org/10.1016/j.scitotenv.2022.153378.
Zayed, M.F., 2022. Medicinal chemistry of quinazolines as analgesic and anti-inflammatory agents. ChemEngineering 6(6), 94. DOI: https://doi.org/10.3390/chemengineering6060094.
Zhang, S.S., Tan, Q.W., Guan, L.P., 2021. Antioxidant, anti-inflammatory, antibacterial and analgesic activities and mechanisms of quinolines, indoles and related derivatives. Mini-Reviews in Medicinal Chemistry 21(16), 2261-2275. DOI: https://doi.org/10.2174/1389557521666210111145011.
Zhang, M., Wang, Y., Wang, S., Wu, H., 2022. Synthesis and biological evaluation of novel pyrimidine amine derivatives bearing bicyclic monoterpene moieties. Molecules 27(22), 8104. DOI: https://doi.org/10.3390/molecules27228104.