
Effect of Carbon Fiber Incorporation on Thermoelectric Performance of SnSe: An Environment Friendly Material for Waste Energy Harvesting
Kriti Tyagi*
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi (110 012), India
Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh (201 002), India
Rohit Yadav
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi (110 012), India
Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh (201 002), India
Harsh Yadav
Dept. of Chemistry, Ramjas College, University of Delhi, New Delhi (110 007), India
S.R. Dhakate
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi (110 012), India
Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh (201 002), India
DOI: https://doi.org/10.54083/BRT/7.4.2025/112-117
Keywords: Carbon fiber, Figure-of-merit, Sustainability, Thermoelectrics
Abstract
Thermoelectric (TE) materials, with their propensity to convert discarded waste heat into electrical energy, have attracted great interest as a source of renewable energy. In present work, we realized improvement in the thermoelectric behaviour of SnSe by composite formation with carbon fiber (CF). The CF incorporation into SnSe matrix leads to decoupling of the interdependent transport characteristics. The SnSe + x wt.% C.F. (x = 0, 0.2, 0.4, 0.6) composites have been prepared by spark plasma sintering process of the prepared composite powders. CF inclusion promotes transportation of charge carriers and contributes towards lower thermal conductivity ascribed to phonon scattering at the interface. A maximum zT value of around 1.1 was attained for SnSe + 0.2% CF at 773K. The contribution to improved zT originates from improved Seebeck coefficient and reduced thermal conductivity values. Our findings provide a probable approach to improve thermoelectric performance of SnSe.
Downloads
not found
Reference
Ahmad, K., Wan, C., Al-Eshaikh, M.A., Kadachi, A.N., 2019. Enhanced thermoelectric performance of Bi2Te3 based graphene nanocomposites. Applied Surface Science 474, 2-8. DOI: https://doi.org/10.1016/j.apsusc.2018.10.163.
Alsalama, M., Hamoudi, H., Abdala, A., Youssef, K.M., 2022. Effect of graphene on thermal stability of tin selenide. Journal of Materials Research and Technology 18, 896-908. DOI: https://doi.org/10.1016/j.jmrt.2022.02.045.
Anjum, F., Dixit, P., Maiti, T., 2024. Enhanced thermoelectric performance with improved mechanical strength in Bi2S3/graphite composites. Carbon 218, 118692. DOI: https://doi.org/10.1016/j.carbon.2023.118692.
Bhatt, P., Goe, A., 2017. Carbon fibres: Production, properties and potential use. Material Science Research India 14(1), 52-57. DOI: http://dx.doi.org/10.13005/msri/140109.
Boccardi, S., Ciampa, F., Meo, M., 2019. Design and development of a heatsink for thermo-electric power harvesting in aerospace applications. Smart Materials and Structures 28(10), 105057. DOI: https://doi.org/10.1088/1361-665X/aacbac.
Chen, C.L., Wang, H., Chen, Y.Y., Day, T., Snyder, G.J., 2014. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. Journal of Materials Chemistry A 2(29), 11171-11176. DOI: https://doi.org/10.1039/C4TA01643B.
Faleev, S.V., Leonard, F., 2008. Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Physical Review B: Condensed Matter and Materials Physics 77(21), 214304. DOI: https://doi.org/10.1103/PhysRevB.77.214304.
Goudarzi, A.M., Mazandarani, P., Panahi, R., Behsaz, H., Rezania, A., Rosendahl, L.A., 2013. Integration of thermoelectric generators and wood stove to produce heat, hot water and electrical power. Journal of Electronic Materials 42, 2127-2133. DOI: https://doi.org/10.1007/s11664-013-2545-8.
Hatzikraniotis, E., Zorbas, K.T., Samaras, I., Kyratsi, Th., Paraskevopoulos, K.M., 2010. Efficiency study of a commercial thermoelectric power generator (TEG) under thermal cycling. Journal of Electronic Materials 39, 2112-2116. DOI: https://doi.org/10.1007/s11664-009-0988-8.
He, Q., Yang, D., Xia, S., Song, H., 2024. Ultra-low thermal conductivity and improved thermoelectric performance in La2O3-dispersed Bi2Sr2Co2Oy ceramics. Materials Science and Engineering: B 299, 116976. DOI: https://doi.org/10.1016/j.mseb.2023.116976.
Heremans, J.P., Wiendlocha, B., Chamoire, A.M., 2012. Resonant levels in bulk thermoelectric semiconductors. Energy & Environmental Science 5, 5510-5530. DOI: https://doi.org/10.1039/C1EE02612G.
Janak, L., Ancik, Z., Vetiska, J., Hadas, Z., 2015. Thermoelectric generator based on MEMS module as an electric power backup in aerospace applications. Materials Today: Proceedings 2(2), 865. DOI: https://doi.org/10.1016/j.matpr.2015.05.112.
Jia, S., Qian, W., Yu, P., Li, K., Li, M., Lan, J., Lin, Y.H., Yang, X., 2024. Ionic thermoelectric materials: Innovations and challenges. Materials Today Physics 42, 101375. DOI: https://doi.org/10.1016/j.mtphys.2024.101375.
Ju, H., Kim, J., 2016. Effect of SiC ceramics on thermoelectric properties of SiC/SnSe composites for solid-state thermoelectric applications. Ceramics International 42, 9550. DOI: https://doi.org/10.1016/j.ceramint.2016.03.035.
Kilinc, E., Uysal, F., Sari, M.A., Kurt, H., Celik, E., 2024. Production of ZnAlO semiconducting materials for thermoelectric generators in potential aerospace applications. Journal of Materials Science: Materials in Electronics 35, 1835. DOI: https://doi.org/10.1007/s10854-024-13601-5.
Lakshmanan, S., Upadhayay, A., 2024. Vehicular emission scenarios in selected regions of India as per vehicular emission norms. Research Biotica 6(2), 87-94. DOI: https://doi.org/10.54083/ResBio/6.2.2024/87-94.
Leng, H., Zhou, M., Zhao, J., Han, Y., Li, L., 2016. Optimization of thermoelectric performance of anisotropic AgxSn1-xSe compounds. Journal of Electronic Materials 45, 527-534. DOI: https://doi.org/10.1007/s11664-015-4143-4.
Li, J.C., Li, D., Xu, W., Qin, X.Y., Li, Y.Y., Zhang, J., 2016. Enhanced thermoelectric performance of SnSe based composites with carbon black nanoinclusions. Applied Physics Letters 109, 173902. DOI: http://dx.doi.org/10.1063/1.4966126.
Liang, A., Jiang, X., Hong, X., Jiang, Y., Shao, Z., Zhu, D., 2018. Recent developments concerning the dispersion methods and mechanisms of graphene. Coatings 8(1), 33. DOI: https://doi.org/10.3390/coatings8010033.
Liang, X., Yang, Y., Dai, F., Wang, C., 2019. Orientation dependent physical transport behavior and the micro-mechanical response of ZnO nanocomposites induced by SWCNTs and graphene: Importance of intrinsic anisotropy and interfaces. Journal of Materials Chemistry C 7, 1208-1221. DOI: https://doi.org/10.1039/C8TC05148H.
Liu, X., Wang, H., Chen, Y., Zhang, B., Zhang, H., Zheng, S., Chen, X., Lu, X., Wang, G., Zhou, X., Han, G., 2022. Simultaneously optimized thermoelectric and mechanical performance of p-type polycrystalline SnSe enabled by CNTs addition. Scripta Materialia 218, 114846. DOI: https://doi.org/10.1016/j.scriptamat.2022.114846.
Martin-Gonzalez, M., Caballero-Calero, O., Diaz-Chao, P., 2013. Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field. Renewable and Sustainable Energy Reviews 24, 288-305. DOI: https://doi.org/10.1016/j.rser.2013.03.008.
Mohammed, N., Wang, R., Jackson, R.W., Noh, Y., Gummeson, J., Lee, S.I., 2021. ShaZam: Charge-free wearable devices via intra-body power transfer from everyday objects. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5(2), 1-25. DOI: https://doi.org/10.1145/3463505.
Ojha, A., Nanda, U., Pradhan, A., Bathula, S., 2024. Enhancement of mechanical performance and reduction in thermal conductivity of Mg2Si-based thermoelectric nanocomposites through rGO addition. Applied Physics A 130(12), 905. DOI: https://doi.org/10.1007/s00339-024-08061-x.
Osborne, R., 2022. Join the fight against fossil fuels. British Medical Journal 379, o2414. DOI: https://doi.org/10.1136/bmj.o2414.
Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L., Snyder, G.J., 2011. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66-69. DOI: https://doi.org/10.1038/nature09996.
Ponraj, N.V., Vettivel, S.C., Azhagurajan, A., Shajan, X.S., Nabhiraj, P.Y., Theivasanthi, T., Selvakumar, P., Lenin, A.H., 2017. Effect of milling on dispersion of graphene nanosheet reinforcement in different morphology copper powder matrix. Surfaces and Interfaces 9, 260-265. DOI: https://doi.org/10.1016/j.surfin.2017.10.006.
Sornek, K., 2021. Study of operation of the thermoelectric generators dedicated to wood-fired stoves. Energies 14(19), 6264. DOI: https://doi.org/10.3390/en14196264.
Tyagi, K., Gahtori, B., Bathula, S., Singh, N.K., Bishnoi, S., Auluck, S., Srivastava, A.K., Dhar, A., 2016. Electrical transport and mechanical properties of thermoelectric tin selenide. RSC Advances 6, 11562-11569. DOI: https://doi.org/10.1039/C5RA23742D.
Wan, C., Gu, X., Dang, F., Itoh, T., Wang, Y., Sasaki, H., Kondo, M., Koga, K., Yabuki, K., Snyder, G.J., Yang, R., Koumoto, K., 2015. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nature Materials 14, 622-627. DOI: https://doi.org/10.1038/NMAT4251.
Yang, S., Si, J., Su, Q., Wu, H., 2017. Enhanced thermoelectric performance of SnSe doped with layered MoS2/graphene. Materials Letters 193, 146-149. DOI: https://doi.org/10.1016/j.matlet.2017.01.079.
Yang, G., Sang, L., Li, M., Islam, K.N., Yue, Z., Liu, L., Li, J., Mitchell, D.R.G., Ye, N., Wang, X., 2020. Enhancing the thermoelectric performance of polycrystalline SnSe by decoupling electrical and thermal transport through carbon fiber incorporation. ACS Applied Materials & Interfaces 12, 12910-12918. DOI: https://dx.doi.org/10.1021/acsami.0c00873.
Yang, X., Shi, T., Bao, W., Wang, Z., Wang, J., Wu, P., Zhang, Y., Feng, J., Ge, Z., 2025. Ultrahigh average zT realized in polycrystalline SnSe0.95 materials through Sn stabilizing and carrier modulation. Journal of Materiomics 11(2), 100880. DOI: https://doi/org/10.1016/j.jmat.2024.04.006.
Zhao, L., Lo, S., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., Kanatzidis, M.G., 2014. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373-377. DOI: https://doi.org/10.1038/nature13184.
Zhao, L., Chang, C., Tan, G., Kanatzidis, M.G., 2016. SnSe: A remarkable new thermoelectric material. Energy & Environmental Science 9, 3044-3060. DOI: https://doi.org/10.1039/C6EE01755J.