Effectiveness of Microbial and Plant Extracts for Pest and Disease Management in Cucumber Production in Abuja Region of Nigeria
Durojaye Hammed Abiodun*
Be the Help Foundation Agroforestry, Plot 25 SCL Farm, Dama-Kusa, Kwali Area Council, Abuja, Nigeria
Kwasari Robert Samuel
Be the Help Foundation Agroforestry, Plot 25 SCL Farm, Dama-Kusa, Kwali Area Council, Abuja, Nigeria
Ado Manasseh H.
Be the Help Foundation Agroforestry, Plot 25 SCL Farm, Dama-Kusa, Kwali Area Council, Abuja, Nigeria
James Confidence N.
Be the Help Foundation Agroforestry, Plot 25 SCL Farm, Dama-Kusa, Kwali Area Council, Abuja, Nigeria
Iwan Aondover Barnabas
Be the Help Foundation Agroforestry, Plot 25 SCL Farm, Dama-Kusa, Kwali Area Council, Abuja, Nigeria
Chukwu Agozirim I.
Be the Help Foundation Agroforestry, Plot 25 SCL Farm, Dama-Kusa, Kwali Area Council, Abuja, Nigeria
Kalu Amarachi Agwu
Be the Help Foundation Agroforestry, Plot 25 SCL Farm, Dama-Kusa, Kwali Area Council, Abuja, Nigeria
DOI: https://doi.org/10.54083/PHA/2.3.2024/70-88
Keywords: Bacillus, Bacterial wilt, Cucumber, Downy mildew, Erwinia, Neem
Abstract
Cucumber is an essential crop in Nigeria predominantly produced by smallholder farmers. Its yield is often hindered by pests and diseases and exacerbated by the reliance on chemical treatments that pose environmental risks. This study addresses the research gap regarding the effectiveness of microbial and plant extracts for pest and disease management in Nigeria for cucumber production.
A randomised complete block design was employed to compare the performance of T1 (Bacillus pumilus), T2 (Isaria fumosorosea), T3 (mixture of T1 and T2), T4 (neem oil), T5 (fermented neem leaf extract), T6 (mixture of T4 and T5) and T7 (control with water) in field and pot environments. The study observed pest and disease incidence, growth and yield parameters. The best treatments for pest control were T2 (1.92) and T5 (2.08) while the least effective treatments were T1 (4.71) and T4 (6.17) pest population plant-1, while T6 was effective in downy mildew and bacterial wilt management with a value of 2.46 and 2.17, respectively, with the highest disease score recorded in T2 with a value of 3.17 and 2.75 for downy mildew and bacterial wilt respectively. The environmental conditions affected the field (11.99 t ha-1 and 3.19) significantly. They favoured higher fruit yield and quality compared to the pot (2.20 t ha-1 and 2.44) with T4 (7.94 t ha-1) and T1 (10.10 t ha-1) treatments having the highest yield while the lowest of 4.83 t ha-1 was recorded in T6. The study concludes that environmental conditions play crucial role in the efficacy of treatments.
Downloads
not found
Reference
Abdelaal, K., AlKahtani, M., Attia, K., Hafez, Y., Király, L., Künstler, A., 2021. The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology 10(6), 520. DOI: https://doi.org/10.3390/biology10060520.
Acharya, B., Mackasmiel, L., Taheri, A., Ondzighi-Assoume, C.A., Weng, Y., Dumenyo, C.K., 2021. Identification of bacterial wilt (Erwinia tracheiphila) resistances in USDA melon collection. Plants 10(9), 1972. DOI: https://doi.org/10.3390/plants10091972.
Adusei, S., Azupio, S., 2022. Neem: A novel biocide for pest and disease control of plants. Journal of Chemistry 2022, 6778554. DOI: https://doi.org/10.1155/2022/6778554.
Ahmed, S., Saleem, M.W., Ali, A., Nisar, M.S., Khan, R.R., Rashid, A., 2020. Cost benefit analysis of integration of biocontrol agents with insecticides and plant extracts for the management of thrips Tabaci Lin. in Bt cotton ecosystem. Pakistan Journal of Zoology 52(5), 1631-2026. DOI: https://doi.org/10.17582/journal.pjz/20170602120635.
Akinwole, A.O., Dauda, A.B., Oyewole, E.B., 2019. Evaluation of growth and fruit quality of cucumber (Cucumis sativus L.) irrigated with African Catfish cultured wastewater. Nigerian Journal of Basic and Applied Sciences 27(2), 95-100. DOI: https://doi.org/10.4314/njbas.v27i2.13.
Alam, M.J., Ahmed, K.S., Rony, M.N.H., Islam, N.T., Bilkis, S., 2019. Bio-efficacy of bio-pesticides against tomato leaf miner, Tuta absoluta, a threatening pest of tomato. Journal of Bioscience and Agriculture Research 22(02), 1852-1862. DOI: https://doi.org/10.18801/jbar.220219.229.
Ali, H., Qasim, M., Saqib, H.S.A., Arif, M., Islam, S., 2015. Synergetic effects of various plant extracts as bio-pesticide against wheat aphid (Diurophous noxia L.) (Hemiptera: Aphididae). African Journal of Agricultural Science Technology 3(7), 310-315.
Ansa, J.E.O., Garjila, Y.A., 2019. Growth and yield response of cucumber (Cucumis sativus) to spacing in the southern rainforest of Rivers state, Nigeria. International Journal of Novel Research in Interdisciplinary Studies 6(5), 26-29.
Arogundade, O., Ajose, T., Matthew, J.O., Osijo, I.A., 2021. Current and emerging pests and diseases of cucumber (Cucumis sativus L.) in Africa. In: Cucumber Economic Values and Its Cultivation and Breeding. (Ed.) Wang, H. IntechOpen. pp. 1-20. DOI: https://doi.org/10.5772/intechopen.96692.
Atiq, M., Zulfiqar, H., Rajput, N.A., Sahi, S.T., Abbas, W., Ahmad, S., Sultan, A., Usman, M., Jabbar, A., Ghaffar, A., Aimen, T., Wasi-Ud-Din., 2022. Bacterial wilt of cucumber: An emerging threat to cucumber production in Pakistan. Plant Cell Biotechnology and Molecular Biology 23(23-24), 54-65. DOI: https://doi.org/10.56557/pcbmb/2022/v23i23-247717.
Balla, A., Silini, A., Cherif-Silini, H., Bouket, A.C., Moser, W.K., Nowakowska, J.A., Oszako, T., Benia, F., Belbahri, L., 2021. The threat of pests and pathogens and the potential for biological control in forest ecosystems. Forests 12(11), 1579. DOI: https://doi.org/10.3390/f12111579.
Bardin, M., Pugliese, M., 2020. Biocontrol agents against diseases. In: Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century, Volume 9. (Eds.) Gullino, M., Albajes, R. and Nicot, P. Springer, Cham. pp. 385-407. DOI: https://doi.org/10.1007/978-3-030-22304-5_13.
Bondarenko, S.V., Stankevych, S.V., Matsyura, A.V., Zhukova, L.V., Zabrodina, I.V., Rysenko, M.M., Golovan, L.V., Romanov, O.V., Romanova, T.A., Novosad, K.B., Klymenko, I.V., 2021. Major cucumber diseases and the crop immunity. Ukrainian Journal of Ecology 11(1), 46-54. DOI: https://doi.org/10.15421/2021_7.
Bondarenko, S.V., Stankevych, S.V., Polozhenets, V.M., Nemerytska, L.V., Zhuravska, I.A., 2022. Downy mildew of cucumber of Gherkin type and immunological potential of breeding material. Ruta Publishing House, Zhytomyr. p. 109. DOI: https://doi.org/10.32851/2226-0099.2022.128.29.
Boro, M., Sannyasi, S., Chettri, D., Verma, A.K., 2022. Microorganisms in biological control strategies to manage microbial plant pathogens: A review. Archives of Microbiology 204, 666. DOI: https://doi.org/10.1007/s00203-022-03279-w.
Call, A.D., 2012. Studies on resistance to downy mildew in cucumber (Cucumis sativus L.) caused by Pseudoperonospora cubensis. M.Sc. Thesis, submitted to the Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina. p. 191. URL: http://www.lib.ncsu.edu/resolver/1840.16/6287.
Choudhary, M., Ghasolia, R.P., Bajaya, T., Shivran, M., 2020. Efficacy of natural products and fungicides against powdery mildew of ber. International Journal of Chemical Studies 8(2), 913-915. DOI: https://doi.org/10.22271/chemi.2020.v8.i2n.8884.
Chowdhury, S.A.R., Talukder, J., 2019. Practice of botanical pesticides for sustainable and safe vegetables production in Bangladesh. Bangladesh Journal of Environmental Science 37, 82-87.
Costa, C.A., Guiné, R.P.F., Costa, D.V.T.A., Correia, H.E., Nave, A., 2023. Pest control in organic farming. Chapter 3. In: Organic Farming: Global Perspectives and Methods, Second Edition. (Eds.) Sarathchandran, Unni, M.R., Thomas, S. and Meena, D.K. Woodhead Publishing, Elsevier Inc. pp. 111-179. DOI: https://doi.org/10.1016/b978-0-323-99145-2.00003-3.
Dania, V.O., Omidiora, J.A., 2019. Combination of biological control agents and garlic (Allium sativum) extract in reducing damping-off disease of tomato. Bangladesh Journal of Agricultural Research 44(3), 553-567. DOI: https://doi.org/10.3329/bjar.v44i3.43485.
Dassanayake, M.K., Chong, C.H., Khoo, T.J., Figiel, A., Szumny, A., Choo, C.M., 2021. Synergistic field crop pest management properties of plant-derived essential oils in combination with synthetic pesticides and bioactive molecules: A review. Foods 10(9), 2016. DOI: https://doi.org/10.3390/foods10092016.
Dobrzyński, J., Jakubowska, Z., Kulkova, I., Kowalczyk, P., Kramkowski, K., 2023. Biocontrol of fungal phytopathogens by Bacillus pumilus. Frontiers in Microbiology 14, 1194606. DOI: https://doi.org/10.3389/fmicb.2023.1194606.
Durojaye, H.A., Agu, G.C., 2019. Antibiotics producing bacteria isolated from farmlands. Bacterial Empire 2(4), 99-102. DOI: https://doi.org/10.36547/be.2019.2.4.99-102.
Durojaye, H.A., Moukoumbi, Y.D., Dania, V.O., Boukar, O., Bandyopadhyay, R., Ortega-Beltran, A., 2019. Evaluation of cowpea (Vigna unguiculata (L.) Walp.) landraces to bacterial blight caused by Xanthomonas axonopodis pv. vignicola. Crop Protection 116, 77-81. DOI: https://doi.org/10.1016/j.cropro.2018.10.013.
Fira, D., Dimkić, I., Berić, T., Lozo, J., Stanković, S., 2018. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology 285, 44-55. DOI: https://doi.org/10.1016/j.jbiotec.2018.07.044.
Folorunso, E.A., Bohata, A., Kavkova, M., Gebauer, R., Mraz, J., 2022. Potential use of entomopathogenic and mycoparasitic fungi against powdery mildew in aquaponics. Frontiers in Marine Science 9, 992715. DOI: https://doi.org/10.3389/fmars.2022.992715.
Gabriel-Ortega, J., Pereira-Murillo, E., Ayón-Villao, F., Castro-Piguave, C., Delvalle-García, I., Castillo, J.A., 2020. Development of an ecological strategy for the control of downy mildew (Pseudoperonospora cubensis) in cucumber cultivation (Cucumis sativus L.). Bionatura 5(2), 1101-1105. DOI: https://doi.org/10.21931/rb/2020.05.02.3.
Gebretsadik, K., Qiu, X., Dong, S., Miao, H., Bo, K., 2021. Molecular research progress and improvement approach of fruit quality traits in cucumber. Theoretical and Applied Genetics 134, 3535-3552. DOI: https://doi.org/10.1007/s00122-021-03895-y.
Ghongade, D.S., Sangha, K.S., 2021. Efficacy of biopesticides against the whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), on parthenocarpic cucumber grown under protected environment in India. Egyptian Journal of Biological Pest Control 31, 19. DOI: https://doi.org/10.1186/s41938-021-00365-x.
Haq, I.U., Ijaz, S., 2020. History and recent trends in plant disease control: An overview. In: Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches. Sustainability in Plant and Crop Protection, Volume 13. (Eds.) Haq, I.U. and Ijaz, S. Springer, Cham. pp. 1-13. DOI: https://doi.org/10.1007/978-3-030-35955-3_1.
Hossain, M.E., 2020. Effectiveness of some botanicals in controlling major Lepidopteran insect pests of Summer Cabbage. M.Sc. Thesis submitted to the Department of Entomology, Sher-e-Bangla Agricultural University, Dhaka. p. 91.
Huang, W., Ratkowsky, D.A., Hui, C., Wang, P., Su, J., Shi, P., 2019. Leaf fresh weight versus dry weight: Which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants? Forests 10(3), 256. DOI: https://doi.org/10.3390/f10030256.
Huang, X., Ren, J., Li, P., Feng, S., Dong, P., Ren, M., 2021. Potential of microbial endophytes to enhance the resistance to postharvest diseases of fruit and vegetables. Journal of the Science of Food and Agriculture 101(5), 1744-1757. DOI: https://doi.org/10.1002/jsfa.10829.
Islam, W., Adnan, M., Shabbir, A., Naveed, H., Abubakar, Y.S., Qasim, M., Tayyab, M., Noman, A., Nisar, M.S., Khan, K.A., Ali, H., 2021. Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microbial Pathogenesis 159, 105122. DOI: https://doi.org/10.1016/j.micpath.2021.105122.
Jaiswal, D.K., Gawande, S.J., Soumia, P.S., Krishna, R., Vaishnav, A., Ade, A.B., 2022. Biocontrol strategies: An eco-smart tool for integrated pest and diseases management. BMC Microbiology 22, 324. DOI: https://doi.org/10.1186/s12866-022-02744-2.
Joshiya, R., Vadodaria, J.R., Nandre, B.M., Sharma, M.K., Wankhade, V.R., 2020. Studies on organic nutrient management on growth and flowering of cucumber (Cucumis sativus L.). International Journal of Current Microbiology and Applied Sciences 9(2), 133-137. DOI: https://doi.org/10.20546/ijcmas.2020.902.016.
Kahia, M., Nguyen, T.T.A., McCune, F., Naasz, R., Antoun, H., Fournier, V., 2021. Insecticidal effect of Bacillus pumilus PTB180 and Bacillus subtilis PTB185 used alone and in combination against the foxglove aphid and the melon aphid (Hemiptera: Aphididae). The Canadian Entomologist 153(6), 726-740. DOI: https://doi.org/10.4039/tce.2021.41.
Kaur, H., 2023. Identification of pathogenicity factors in Erwinia tracheiphila, causal agent of bacterial wilt. M.Sc. Thesis, submitted to the Tennessee State University, Nashville, United States. p. 16. URL: https://digitalscholarship.tnstate.edu/dissertations/AAI30571661.
Keinath, A.P., 2019. Integrated management of downy mildew on slicing cucumber with fungicides and host resistance but not trellising. Plant Disease 103(10), 2592-2598. DOI: https://doi.org/10.1094/pdis-02-19-0323-re.
Keta, J.N., Suberu, H.A., Shehu, K., Yahayya, U., Mohammad, N.K., Gudu, G.B., 2019. Effect of neem (Azadirachta indica A. Juss) leaf extract on the growth of Aspergillus species isolated from foliar diseases of rice (Oryza sativa). Science World Journal 14(1), 98-102.
Khanam, H., Rahman, M.S., Islam, M.J., Fancy, R., Hosain, M.B., Rima, R.S.N., 2020. Allelopathic effect of neem (Azadirachta indica) leaf extracts on germination and seedling growth of some vegetable crops. Asian Journal of Research in Botany 3(2), 435-443.
Kumar, S., Bhowmick, M.K., Ray, P., 2021. Weeds as alternate and alternative hosts of crop pests. Indian Journal of Weed Science 53(1), 14-29. DOI: https://doi.org/10.5958/0974-8164.2021.00002.2.
Kumari, P., Geat, N., Maurya, S., Meena, S., 2020. Neem: Role in leaf spot disease management: A review. Journal of Pharmacognosy and Phytochemistry 9(1), 1995-2000.
Lengai, G.M.W., Muthomi, J.W., Mbega, E.R., 2020. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African 7, e00239. DOI: https://doi.org/10.1016/j.sciaf.2019.e00239.
Liu, X., Pan, Y., Liu, C., Ding, Y., Wang, X., Cheng, Z., Meng, H., 2020. Cucumber fruit size and shape variations explored from the aspects of morphology, histology and endogenous hormones. Plants 9(6), 772. DOI: https://doi.org/10.3390/plants9060772.
Mahmood, U., Inam-ul-Haq, M., Irshad, G., Hayat, R., 2023. Integration of rhizobacterial isolates and airone chemical for effective management of bacterial wilt in cucumber (Cucumis sativus). International Journal of Phytopathology 12(3), 221-233. DOI: https://doi.org/10.33687/phytopath.012.03.4986.
Matumba, L., Namaumbo, S., Ngoma, T., Meleke, N., De Boevre, M., Logrieco, A.F., De Saeger, S., 2021. Five keys to prevention and control of mycotoxins in grains: A proposal. Global Food Security 30, 100562. DOI: https://doi.org/10.1016/j.gfs.2021.100562.
Messelink, G.J., Calvo, F.J., Marín, F., Janssen, D., 2020. Cucurbits. In: Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century, Volume 9. (Eds.) Gullino, M., Albajes, R. and Nicot, P. Springer, Cham. pp. 537-566. DOI: https://doi.org/10.1007/978-3-030-22304-5_19.
Ni, L., Punja, Z.K., 2021. Management of powdery mildew on greenhouse cucumber (Cucumis sativus L.) plants using biological and chemical approaches. Canadian Journal of Plant Pathology 43(1), 35-42. DOI: https://doi.org/10.1080/07060661.2020.1746694.
Nyambo, P., Nyambo, P., Mavunganidze, Z., Nyambo, V., 2022. Sub-Saharan Africa smallholder farmers agricultural productivity: Risks and challenges. In: Food Security for African Smallholder Farmers. Sustainability Sciences in Asia and Africa. (Eds.) Mupambwa, H.A., Nciizah, A.D., Nyambo, P., Muchara, B. and Gabriel, N.N. Springer, Singapore. pp. 47-58. DOI: https://doi.org/10.1007/978-981-16-6771-8_3.
Okafor, B.N., Yaduma, J.J., 2021. Soil and agronomic management for cucumber production in nigeria. In: Cucumber Economic Values and Its Cultivation and Breeding. (Ed.) Wang, H. IntechOpen. pp. 1-10. DOI: https://doi.org/10.5772/intechopen.96087.
Oke, O.S., Jatto, K.A., Oyaniyi, T., Adewumi, O.T., Adara, C.T., Marizu, J.T., Ogunbela, A.A., Adebayo, G.J., 2020. Responses of different poultry manure levels on the growth and yield of cucumber (Cucumis sativus Linn.) in Ibadan, Nigeria. Journal of Research in Forestry, Wildlife and Environment 12(3), 206-215.
Ortega-Beltran, A., Moral, J., Picot, A., Puckett, R.D., Cotty, P.J., Michailides, T.J., 2019. Atoxigenic Aspergillus flavus isolates endemic to almond, fig and pistachio orchards in California with potential to reduce aflatoxin contamination in these crops. Plant Disease 103(5), 905-912. DOI: https://doi.org/10.1094/pdis-08-18-1333-re.
Pal, A., Adhikary, R., Shankar, T., Sahu, A.K., Maitra, S., 2020. Cultivation of cucumber in greenhouse. Chapter 14. In: Protected Cultivation and Smart Agriculture. (Eds.) Maitra, S., Gaikwad, D.J. and Shankar, T. New Delhi Publishers, New Delhi, India. pp. 139-145.
Pan, L., Feng, X., Jing, J., Zhang, J., Zhuang, M., Zhang, Y., Wang, K., Zhang, H., 2022. Effects of pymetrozine and tebuconazole with foliar fertilizer through mixed application on plant growth and pesticide residues in cucumber. Bulletin of Environmental Contamination and Toxicology 108, 267-275. DOI: https://doi.org/10.1007/s00128-021-03396-0.
Qi, Y.H., He, Y.J., Wang, X., Zhang, C.X., Chen, J.P., Lu, G., Li, J.M., 2021. Physical contact transmission of Cucumber green mottle mosaic virus by Myzus persicae. PLoS ONE 16(6), e0252856. DOI: https://doi.org/10.1371/journal.pone.0252856.
Reddy, D.S., Chowdary, N.M., 2021. Botanical biopesticide combination concept - a viable option for pest management in organic farming. Egyptian Journal of Biological Pest Control 31, 23. DOI: https://doi.org/10.1186/s41938-021-00366-w.
Rogers, M.A., Ownley, B.H., Avery, P.B., Wszelaki, A.L., 2017. Toxicity and efficacy of novel biopesticides for organic management of cucumber beetles on Galia muskmelons. Organic Agriculture 7, 365-377. DOI: https://doi.org/10.1007/s13165-016-0161-7.
Safaei, M., Jorkesh, A., Olfati, J., 2022. Chemical and biological products for control of powdery mildew on cucumber. International Journal of Vegetable Science 28(3), 233-238. DOI: https://doi.org/10.1080/19315260.2021.1935388.
Salcedo, A., Hausbeck, M., Pigg, S., Quesada-Ocampo, L.M., 2020. Diagnostic guide for cucurbit downy mildew. Plant Health Progress 21(3), 166-172. DOI: https://doi.org/10.1094/php-12-19-0095-dg.
Saleem, M.S., Batool, T.S., Akbar, M.F., Raza, S., Shahzad, S., 2019. Efficiency of botanical pesticides against some pests infesting hydroponic cucumber, cultivated under greenhouse conditions. Egyptian Journal of Biological Pest Control 29, 37. DOI: https://doi.org/10.1186/s41938-019-0138-4.
Sallam, B.N., Lu, T., Yu, H., Li, Q., Sarfraz, Z., Iqbal, M.S., Khan, S., Wang, H., Liu, P., Jiang, W., 2021. Productivity enhancement of cucumber (Cucumis sativus L.) through optimized use of poultry manure and mineral fertilizers under greenhouse cultivation. Horticulturae 7(8), 256. DOI: https://doi.org/10.3390/horticulturae7080256.
Sani, I., Jamian, S., Saad, N., Abdullah, S., Mohd Hata, E., Jalinas, J., Ismail, S.I., 2023. Inoculation and colonization of the entomopathogenic fungi, Isaria javanica and Purpureocillium lilacinum, in tomato plants and their effect on seedling growth, mortality and adult emergence of Bemisia tabaci (Gennadius). PLoS ONE 18(5), e0285666. DOI: https://doi.org/10.1371/journal.pone.0285666.
Sharma, A., Shukla, A., Gupta, M., 2023a. Effect of bioagents on cucumber seed mycoflora, seed germination and seedling vigour. Scientific Reports 13, 6052. DOI: https://doi.org/10.1038/s41598-023-30253-3.
Sharma, A., Dutta, P., Mahanta, M., Kumari, A., Yasin, A., 2023b. Botanicals as a source of nanomaterial for pest and disease management. Plant Health Archives 1(3), 96-101. DOI: https://doi.org/10.54083/PHA/1.3.2023/96-101.
Singh, A., Bhardwaj, R., Singh, I.K., 2019. Biocontrol agents: Potential of biopesticides for integrated pest management. In: Biofertilizers for Sustainable Agriculture and Environment. Soil Biology, Volume 55. (Eds.) Giri, B., Prasad, R., Wu, Q.S. and Varma, A. Springer, Cham. pp. 413-433. DOI: https://doi.org/10.1007/978-3-030-18933-4_19.
Sriraj, P., Toomsan, B., Butnan, S., 2022. Effects of neem leaf extract on the soil properties, growth, yield and inorganic nitrogen contents of lettuce. Horticulturae 8(12), 1104. DOI: https://doi.org/10.3390/horticulturae8121104.
Srivastava, R.M., Joshih, S., 2021. Integrated pest management for cucurbits in cucumber (Cucumis sativus L.). In: Cucumber Economic Values and Its Cultivation and Breeding. (Ed.) Wang, H. IntechOpen. pp. 1-16. DOI: https://doi.org/10.5772/intechopen.97123.
Sultana, M.S., Azad, M.A.K., Islam, M.S., 2020. Screening of some botanicals for eco-friendly control of cucurbit fruit fly (Bactrocera cucurbitae) infestation in experimental cucumber field. Journal of Environmental Science and Natural Resources 13(1-2), 38-42. DOI: https://doi.org/10.3329/jesnr.v13i1-2.60685.
Sun, Z., Yu, S., Hu, Y., Wen, Y., 2022. Biological control of the cucumber downy mildew pathogen Pseudoperonospora cubensis. Horticulturae 8(5), 410. DOI: https://doi.org/10.3390/horticulturae8050410.
Tian, J., Diao, H., Liang, L., Hao, C., Arthurs, S., Ma, R., 2015. Pathogenicity of Isaria fumosorosea to Bemisia tabaci, with some observations on the fungal infection process and host immune response. Journal of Invertebrate Pathology 130, 147-153. DOI: https://doi.org/10.1016/j.jip.2015.08.003.
Uebbing, M.R., 2023. Managing cucurbit downy mildew on pickling cucumber using disease forecasters and fungicides. M.Sc. Thesis, submitted to the Michigan State University, East Lansing, United States. p. 89.
van Lenteren, J.C., Alomar, O., Ravensberg, W.J., Urbaneja, A., 2020. Biological control agents for control of pests in greenhouses. In: Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century, Volume 9. (Eds.) Gullino, M., Albajes, R. and Nicot, P. Springer, Cham. pp. 409-439. DOI: https://doi.org/10.1007/978-3-030-22304-5_14.
Weng, Q., Zhang, X., Chen, W., Hu, Q., 2019. Secondary metabolites and the risks of Isaria fumosorosea and Isaria farinosa. Molecules 24(4), 664. DOI: https://doi.org/10.3390/molecules24040664.
Winstead, N.N., Kelman, A., 1952. Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopathology 42(11), 628-634.
Xu, J., Xu, X., Shakeel, M., Li, S., Wang, S., Zhou, X., Yu, J., Xu, X., Yu, X., Jin, F., 2017. The entomopathogenic fungi Isaria fumosorosea plays a vital role in suppressing the immune system of Plutella xylostella: RNA-Seq and DGE analysis of immunity-related genes. Frontiers in Microbiology 8, 1421. DOI: https://doi.org/10.3389/fmicb.2017.01421.
Yadav, S.P.S., Pokhrel, S., Poudel, A., Devkota, S., Katel, S., Bhattarai, N., Gautam, P., 2024. Evaluation of different insecticides against Liriomyza sativae (Diptera: Agromyzidae) on cucumber plants. Journal of Agriculture and Food Research 15, 100987. DOI: https://doi.org/10.1016/j.jafr.2024.100987.
Yang, J., Guan, A., Li, Z., Zhang, P., Liu, C., 2020. Design, synthesis and structure - Activity relationship of novel spiropyrimidinamines as fungicides against Pseudoperonospora cubensis. Journal of Agricultural and Food Chemistry 68(24), 6485-6492. DOI: https://doi.org/10.1021/acs.jafc.9b07055.
Zapata-Sifuentes, G., Hernandez-Montiel, L.G., Saenz-Mata, J., Fortis-Hernandez, M., Blanco-Contreras, E., Chiquito-Contreras, R.G., Preciado-Rangel, P., 2022. Plant growth-promoting rhizobacteria improve growth and fruit quality of cucumber under greenhouse conditions. Plants 11(12), 1612. DOI: https://doi.org/10.3390/plants11121612.