Article Details

  1. Home
  2. Article Details
image description

PDF

Published

2024-05-12

How to cite

Abdulsalam, M., Mustapha, S.M., Bolaji, A.A., Ibrahim, G.O., 2024. From trash to treasure: The prospect of producing bioethanol from wastepaper through pretreatment with sulphuric acid. Plant Health Archives 2(2), 37-40. DOI: 10.54083/PHA/2.2.2024/37-40.

Issue

License

Copyright (c) 2024 Plant Health Archives

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

HOME / ARCHIVES / Vol. 2 No. 2 : April-June (2024) / Research Articles

From Trash to Treasure: The Prospect of Producing Bioethanol from Wastepaper through Pretreatment with Sulphuric Acid

Mustapha Abdulsalam*

Dept. of Microbiology, Skyline University Nigeria, Kano (700 103), Nigeria

Suleiman Muhammed Mustapha

Dept. of Biological Sciences, Summit University, Offa, Kwara (PMB 4412), Nigeria

Ajibade Abdulbasit Bolaji

Dept. of Microbiology, University of Ilorin, Ilorin (PMB 1515), Nigeria

Ganiyat Omotayo Ibrahim

Dept. of Chemistry, Nottingham Trent University, Nottingham (NG14 BY), England (UK)

DOI: https://doi.org/10.54083/PHA/2.2.2024/37-40

Keywords: Bioethanol, Pre-treatment, Saccharomyces cerevisiae, Sulphuric acid, Waste paper

Abstract


Bioethanol is a prospective alternative to nonrenewable energy sources and this study aimed to produce bioethanol from waste paper using a pre-treatment technique. Freshly fermented palm wine was analyzed using standard microbiological techniques to identify the microorganisms used in the study. The pre-treatment process utilized sulphuric acid and sodium hydroxide at varying concentrations (5%, 10%, 25%, 40% and 50%). The substrates had glucose concentrations ranging from 0.2 to 0.9 ppm and the peak yield was recorded at 10% sulphuric acid pretreatment. Bioethanol was produced through fractional distillation and sugar fermentation with Saccharomyces cerevisiae. The viability of bioethanol production using waste paper has been demonstrated as a sustainable method of waste management and a potential solution to energy shortages, particularly in developing countries.

Downloads


not found

Reference


Abdulsalam, M., Fari, H.I., Tiamiyu, B.B., Salam, O.L., 2022. Optimizing α-amylase production from locally Isolated Aspergillus species using selected agro waste as substrate. Bioscience Biotechnology Research Communications 15(3), 424-430. DOI: https://doi.org/10.21786/bbrc/15.3.8.

de Mello, A.F.M., Vandenberghe, L.P.S., Machado, C.M.B., Valladares-Diestra, K.K., de Carvalho, J.C., Soccol, C.R., 2023. Polyhydroxybutyrate production by Cupriavidus necator in a corn biorefinery concept. Bioresource Technology 370, 128537. DOI: https://doi.org/10.1016/j.biortech.2022.128537.

Egbe, Z.M., Nwinyi, O.C., Ahuekwe, E.F., George, D.Z., 2022. Bioethanol production from waste paper: An alternative energy source. IOP Conference Series: Earth and Environmental Science 1054(2022), 012002. DOI: https://doi.org/10.1088/1755-1315/1054/1/012002.

Igbokwe, V.C., Ezugworie, F.N., Onwosi, C.O., Aliyu, G.O., Obi, C.J., 2022. Biochemical biorefinery: A low-cost and non-waste concept for promoting sustainable circular bioeconomy. Journal of Environmental Management 305, 114333. DOI: https://doi.org/10.1016/j.jenvman.2021.114333.

Jacobus, A.P., Gross, J., Evans, J.H., Ceccato-Antonini, S.R., Gombert, A.K., 2021. Saccharomyces cerevisiae strains are used industrially for bioethanol production. Essays in Biochemistry 65(2), 147-161. DOI: https://doi.org/10.1042/EBC20200160.

Jojima, T., Igari, T., Noburyu, R., Watanabe, A., Suda, M., Inui, M., 2021. The coexistence of the Entner-Doudoroff and Embden-Meyerhof-Parnas pathways enhances glucose consumption of ethanol-producing Corynebacterium glutamicum. Biotechnology for Biofuels 14, 45. DOI: https://doi.org/10.1186/s13068-021-01876-3.

Nanda, S., Berruti, F., 2021. Municipal solid waste management and landfilling technologies: A review. Environmental Chemistry Letters 19, 1433-1456. DOI: https://doi.org/10.1007/s10311-020-01100-y.

Nwinyi, O.C., Hassan, W.D., 2021. Production of fruit wine using a wild strain of Saccharomyces cerevisiae isolated from fresh palm wine for sustainable food security. IOP Conference Series: Earth and Environmental Science 665(2021), 012073. DOI: https://doi.org/10.1088/1755-1315/665/1/012073.

Osman, A.I., Fang, B., Zhang, Y., Liu, Y., Yu, J., Farghali, M., Rashwan, A.K., Chen, Z., Chen, L., Ihara, I., Rooney, D.W., Yap, P.S., 2024. Life cycle assessment and techno-economic analysis of sustainable bioenergy production: A review. Environmental Chemistry Letters 22, 1115-115. DOI: https://doi.org/10.1007/s10311-023-01694-z.

Oyebanji, M.O., Kirikkaleli, D., 2022. Energy productivity and environmental deregulation: The case of Greece. Environmental Science and Pollution Research 29, 82772-82784. DOI: https://doi.org/10.1007/s11356-022-21590-3.

Pang, A.P., Wang, H., Lou, Y., Yang, Z., Liu, Z., Wang, Z., Li, B., Yang, S., Zhou, Z., Lu, X., Wu, F.G., Lu, Z., Lin, F., 2021. Dissecting cellular function and distribution of β-Glucosidases in Trichoderma reesei. mBio 12(3), e03671-20. DOI: https://doi.org/10.1128/mbio.03671-20.

Park, H., Jeong, D., Shin, M., Kwak, S., Oh, E.J., Ko, J.K., Kim, S.R., 2020. Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol. Applied Microbiology and Biotechnology 104, 3245-3252. DOI: https://doi.org/10.1007/s00253-020-10427-z.

Ramos, J.L., Pakuts, B., Godoy, P., García-Franco, A., Duque, E., 2022. Addressing the energy crisis: using microbes to make biofuels. Microbial Biotechnology 15(4), 1026-1030. DOI: https://doi.org/10.1111/1751-7915.14050.

Robak, K., Balcerek, M., 2020. The current state-of-the-art in ethanol production from lignocellulosic feedstocks. Microbiological Research 240, 126534. DOI: https://doi.org/10.1016/j.micres.2020.126534.

Saini, R., Chen, C.W., Patel, A.K., Saini, J.K., Dong, C.D., Singhania, R.R., 2022. Valorization of pineapple leaves waste for the production of bioethanol. Bioengineering 9(10), 557. DOI: https://doi.org/10.3390/bioengineering9100557.

Thiyagarajan, P., Varna, M., Ansar Ali, M.A., Rema Shree, A.B., 2023. Development of low-cost artificial diet for mass production of entomopathogenic nematode, Heterorhabditis indica a strain ICRI EPN-18. Plant Health Archives 1(2), 34-36. DOI: https://doi.org/10.54083/PHA/1.2.2023/34-36.

Verma, N., Taggar, M.S., Kalia, A., Kaur, J., Javed, M., 2022. Comparison of various delignification/desilication pre-treatments and indigenous fungal cellulase for improved hydrolysis of paddy straw. 3 Biotech 12, 150. DOI: https://doi.org/10.1007/s13205-022-03211-5.