Article Details

  1. Home
  2. Article Details
image description

PDF

Published

2022-02-22

How to cite

Chittora, V., 2022. Generalized least square method for regression analysis. Biotica Research Today 4(2), 132-134.

Issue

License

Copyright (c) 2024 Biotica Research Today

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

HOME / ARCHIVES / Vol. 4 No. 2 : February (2022) / Popular Article

Generalized Least Square Method for Regression Analysis

Vaibhav Chittora

Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh (173 230), India

DOI: NIL

Keywords: GLS, OLS, Variance matrix

Abstract


In regression analysis while estimating the parameters our data should follow the assumption of classical regression to have the valid estimator of the regression parameters. Sometime while estimating the parameter data does not follow the assumption of classical regression like constant variance of residual and autocorrelation of residual in that situation classical approach of estimating the regression parameter ordinary least square will not give valid estimators in that situation generalized least square will used.

Downloads


not found

Reference


Greene, W.H., 2003. Econometric Analysis. Prentice Hall, New Jersey, p. 828.

Gujarati, D.N., 2005. Basic Econometrics. McGraw-Hill, New York, p. 947.

Montgomery, D.C., Peck, E., Vining, G.G., 2014. Introduction to Linear Regression Analysis. WILEY Singapore, p. 672.

Musau, M.V., Waititu, A.G.P., Wanjoya, A.K., 2015. Modelling Panel Data: Comparison of GLS Estimation and Robust Covariance Matrix Estimation. American Journal of Theoretical and Applied Statistics 4(3), 185-191.