Nanotechnology in Plant Disease Management
Dumpapenchala Vijayreddy*
Dept. of Plant Pathology, School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya (793 103), India
Pranab Dutta
Dept. of Plant Pathology, School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya (793 103), India
Krishti Rekha Puzari
Dept. of Plant Pathology, School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya (793 103), India
DOI: https://doi.org/10.54083/ResBio/5.2.2023/56-62
Keywords: Characterization, Nanofungicides, Nanoparticles, Nanotechnology, Plant disease management, Synthesis
Abstract
The mesmerizing science of nanotechnology is the process of manipulating atoms and molecules to produce materials characterized by their minuscule dimensions, including nanoparticles ranging from 1 to 100 nanometers. Despite being relatively new areas of study, nanoscience and nanotechnology are rapidly emerging as the forefront of research, continually generating the latest discoveries. Every year, nearly 20-40% crop losses occur mainly due to diseases and pests. The only method currently used to control plant diseases are toxic pesticides and fungicides, which pose risks to both the human well-being and the ecosystem. To reduce these problems the only needed solution is nanotechnology. It employs the use of nanoparticles synthesized by various methods. Plant diseases are managed effectively by using diverse nanoparticles, like silver nanoparticles, copper nanoparticles and zinc oxide nanoparticles. The rapid detection of plant pathogens, the biosensor-based control of pests and diseases, soil management and other areas are all greatly impacted by nanotechnology.
Downloads
not found
Reference
Abdellatif, K.F., Hamouda, R.A., El-Ansary, M.S.M., 2016. Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iranian Journal of Biotechnology 14(4), 250-259. DOI: https://doi.org/10.15171/ijb.1309.
Albanese, A., Tang, P.S., Chan, W.C.W., 2012. The effect of nanoparticle size, shape and surface chemistry on biological systems. Annual Review of Biomedical Engineering 14, 1-16. DOI: https://doi.org/10.1146/annurev-bioeng-071811-150124.
Ardakani, A.S., 2013. Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita and growth parameters of tomato. Nematology 15(6), 671-677. DOI: https://doi.org/10.1163/15685411-00002710.
Barcelos, D.A., Gonçalves, M.C., 2023. Daylight photoactive TiO2 Sol-Gel nanoparticles: Sustainable environmental contribution. Materials 16(7), 2731. DOI: https://doi.org/10.3390/ma16072731.
Chen, J., Wang, X., Han, H., 2013. A new function of graphene oxide emerges: inactivating phytopathogenic bacterium, Xanthomonas oryzae pv. oryzae. Journal of Nanoparticle Research 15(5), 1658. DOI: https://doi.org/10.1007/s11051-013-1658-6.
Chu, H., Kim, H.J., Kim, J.S., Kim, M.S., Yoon, B.D., Park, H.J., Kim, C.Y., 2012. A nanosized Ag-silica hybrid complex prepared by γ-irradiation activates the defense response in Arabidopsis. Radiation Physics and Chemistry 81(2), 180-184. DOI: https://doi.org/10.1016/j.radphyschem.2011.10.004.
Concha-Guerrero, S.I., Brito, E.M.S., Caretta, C.A., 2017. Impact of the nanomaterials on soil bacterial biodiversity. In: Nanotechnology. (Eds.) Prasad, R., Kumar, V. and Kumar, M. Springer, Singapore. pp. 173-190. DOI: https://doi.org/10.1007/978-981-10-4678-0_10.
Cromwell, W.A., Yang, J., Starr, J.L., Jo, Y.K., 2014. Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. Journal of Nematology 46(3), 261-266.
D’Amato, R., Falconieri, M., Gagliardi, S., Popovici, E., Serra, E., Terranova, G., Borsella, E., 2013. Synthesis of ceramic nanoparticles by laser pyrolysis: From research to applications. Journal of Analytical and Applied Pyrolysis 104, 461-469. DOI: https://doi.org/10.1016/j.jaap.2013.05.026.
Datnoff, L.E., Rodrigues, F.A., Seebold, K.W., 2007. Silicon and plant disease. In: Mineral Nutrition and Plant Disease. (Eds.) Datnoff, L.E., Elmer, W.H. and Huber, D.M. APS Press - The American Phytopathological Society, St. Paul, Minnesota, USA. pp. 233-246.
Derbalah, A.S., El-Moghazy, S.M., Godah, M.I., 2013. Alternative control methods of sugar-beet leaf spot disease caused by the fungus Cercospora beticola (Sacc). Egyptian Journal of Biological Pest Control 23(2), 247-254.
Dutta, P., Kumari, A., Mahanta, M., Upamanya, G.K., Heisnam, P., Borua, S., Kaman, P.K., Mishra, A.K., Mallik, M., Muthukrishnan, G., Sabarinathan, K.G., Puzari, K.R., Vijayreddy, D., 2023. Nanotechnological approaches for management of soil-borne plant pathogens. Frontiers in Plant Science 14, 1136233. DOI: https://doi.org/10.3389/fpls.2023.1136233.
Dutta, P., Kumari, A., Mahanta, M., Biswas, K.K., Dudkiewicz, A., Thakuria, D., Abdelrhim, A.S., Singh, S.B., Muthukrishnan, G., Sabarinathan, K.G., Mandal, M.K., Mazumdar, N., 2022. Advances in nanotechnology as a potential alternative for plant viral disease management. Frontiers in Microbiology 13, 935193. DOI: https://doi.org/10.3389/fmicb.2022.935193.
Dutta, P., Das, G., Boruah, S., Kumari, A., Mahanta, M., Yasin, A., Sharma, A., Deb, L., 2021. Nanoparticles as nano-priming agent for antifungal and antibacterial activity against plant pathogens. Biological Forum - An International Journal 13(3), 476-482.
Dutta, P., Kumari, J., Borah, P., Baruah, P., Kaman, P.K., Das, G., Kumari, A., Saikia, B., 2020. Synthesis of fungus mediate silver nanoparticles (AgNP) its characterization and study the efficacy against inoculam, biomass and protein content of Fusarium oxysporum. International Journal of Chemical Studies 8(4), 2619-2625. DOI: https://doi.org/10.22271/chemi.2020.v8.i4ae.10029.
Dutta, P., Kaman, P.K., 2017. Nanocentric plant health management with special reference to silver. International Journal of Current Microbiology and Applied Sciences 6(6), 2821-2830. DOI: https://doi.org/10.20546/ijcmas.2017.606.336.
Ealias, S.A.M., Saravanakumar, M.P., 2017. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering 263(3), 032019. DOI: https://doi.org/10.1088/1757-899X/263/3/032019.
Elmer, W., Torre-Roche, R.D.L., Pagano, L., Majumdar, S., Zuverza-Mena, N., Dimpka, C., Gardea-Torresdey, J., White, J.C., 2018. Effect of metalloid and metallic oxide nanoparticles on Fusarium wilt of watermelon. Plant Disease 102(7), 1394-1401. DOI: https://doi.org/10.1094/PDIS-10-17-1621-RE.
Elmer, W., White, J.C., 2018. The future of nanotechnology in plant pathology. Annual Review of Phytopathology 56, 111-133. DOI: https://doi.org/10.1146/annurev-phyto-080417-050108.
Elmer, W.H., White, J., 2016. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science: Nano 3(5), 1072-1079. DOI: https://doi.org/10.1039/C6EN00146G.
Giannousi, K., Avramidis, I., Dendrinou-Samara, C., 2013. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Advances 3(44), 21743-52. DOI: https://doi.org/10.1039/c3ra42118j.
Graham, J.H., Johnson, E.G., Myers, M.E., Young, M., Rajasekaran, P., Das, S., Santra, S., 2016. Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Disease 100(12), 2442-2447. DOI: https://doi.org/10.1094/PDIS-05-16-0598-RE.
Haefeli, C., Franklin, C., Hardy, K., 1984. Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. Journal of Bacterioliology 158(1), 389-392. DOI: https://doi.org/10.1128/jb.158.1.389-392.1984.
Imada, K., Sakai, S., Kajihara, H., Tanaka, S., Ito, S., 2016. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology 65(4), 551-560. DOI: https://doi.org/10.1111/ppa.12443.
Indhumathy, M., Mala, R., 2013. Photocatalytic activity of zinc sulphate nano material on phytopathogens. International Journal of Environment, Agriculture and Biotechnology 6(4S), 737-743.
Jagana, D., Hegde, Y.R., Lella, R., 2017. Green nanoparticles: a novel approach for the management of banana anthracnose caused by Colletotrichum musae. International Journal of Current Microbiology and Applied Sciences 6(10), 1749-1756. DOI: https://doi.org/10.20546/ijcmas.2017.610.211.
Kadar, E., Cunliffe, M., Fisher, A., Stolpe, B., Lead, J., Shi, Z., 2014. Chemical interaction of atmospheric mineral dust-derived nanoparticles with natural seawater-EPS and sunlight-mediated changes. Science of the Total Environment 468, 265-271. DOI: https://doi.org/10.1016/j.scitotenv.2013.08.059.
Kaman, P.K., Dutta, P., 2019. Synthesis, characterization and antifungal activity of biosynthesized silver nanoparticle. Indian Phytopathology 72(1), 79-88. DOI: https://doi.org/10.1007/s42360-018-0081-4.
Kanhed, P., Birla, S., Gaikwad, S., Gade, A., Seabra, A.B., Rubilar, O., Duran, N., Rai, M., 2014. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Letters 115, 13-17. DOI: https://doi.org/10.1016/j.matlet.2013.10.011.
Kaushik, H., Dutta, P., 2017. Chemical synthesis of zinc oxide nanoparticle: Its application for antimicrobial activity and plant health management. In: Changing Landscapes of Plant Pathology. 109th Annual Meeting of the American Phytopathological Society, August 05-09, 2017, San Antonio, Texas. p. 97.
Keat, C.L., Aziz, A., Eid, A.M., Elmarzugi, N.A., 2015. Biosynthesis of nanoparticles and silver nanoparticles. Bioresources and Bioprocessing 2(1), 47. DOI: https://doi.org/10.1186/s40643-015-0076-2.
Khan, M.R., Rizvi, T.F., 2014. Nanotechnology: Scope and application in plant disease management. Plant Pathology Journal 13(3), 214-231. DOI: https://doi.org/10.3923/ppj.2014.214.231.
Kim, H.S., Kang, H.S., Chu, G.J., Byun, H.S., 2008. Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenomena 135, 15-18. DOI: https://doi.org/10.4028/www.scientific.net/SSP.135.15.
Liang, Y., Yang, D., Cui, J., 2017. A graphene oxide/silver nanoparticle composite as a novel agricultural antibacterial agent against Xanthomonas oryzae pv. oryzae for crop disease management. New Journal of Chemistry 41(22), 13692-13699. DOI: https://doi.org/10.1039/C7NJ02942J.
Mallaiah, B., 2015. Integrate approaches for the management of Crossandra (Crossandra infundibuliformis L. nees) wilt caused by Fusarium incarnatum (Desm.) Sacc. PhD Thesis, Tamil Nadu Agricultural University, Madurai, India.
Matouskova, P., Marova, I., Bokrova, J., Benesova, P., 2016. Effect of encapsulation on antimicrobial activity of herbal extracts with lysozyme. Food Technology and Biotechnology 54(3), 304-316. DOI: https://doi.org/10.17113/ftb.54.03.16.4413.
Mishra, S., Singh, B.R., Singh, A., Keswani, C., Naqvi, A.H., Singh, H.B., 2014. Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. Plos One 9(5), e97881. DOI: https://doi.org/10.1371/journal.pone.0097881.
Moussa, S.H., Tayel, A.A., Alsohim, A.S., Abdallah, R.R., 2013. Botryticidal activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. Journal of Food Science 78(10), M1589-M1594. DOI: https://doi.org/10.1111/1750-3841.12247.
Nassar, A.M., 2016. Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognita. Asian Journal of Nematology 5(1), 14-19. DOI: https://doi.org/10.3923/ajn.2016.14.19.
Oprică, L., Bălășoiu, M., 2020. Nanoparticles: An overview about their clasifications, synthesis, properties, characterization and applications. Journal of Experimental and Molecular Biology 20(4), 43-60.
Ouda, S.M., 2014. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Research Journal of Microbiology 9(1), 34-42.
Pinto-Alphandary, H., Andremont, A., Couvreur, P., 2000. Targeted delivery of antibiotics using liposomes and nanoparticles: Research and applications. International Journal of Antimicrobial Agents 13(3), 155-168. DOI: https://doi.org/10.1016/S0924-8579(99)00121-1.
Ponmurugan, P., Manjukarunambika, K., Elango, V., Gnanamangai, B.M., 2016. Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. Journal of Experimental Nanoscience 11(13), 1019-1031. DOI: https://doi.org/10.1080/17458080.2016.1184766.
Rezaei, S., Manoucheri, I., Moradian, R., Pourabbas, B., 2014. One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication. Chemical Engineering Journal 252, 11-16. DOI: https://doi.org/10.1016/j.cej.2014.04.100.
Richards, R.M., 1981. Antimicrobial action of silver nitrate. Microbios 31(124), 83-91.
Saeedi, M., Eslamifar, M., Khezri, K., Dizaj, S.M., 2019. Applications of nanotechnology in drug delivery to the central nervous system. Biomedicine & Pharmacotherapy 111, 666-675. DOI: https://doi.org/10.1016/j.biopha.2018.12.133.
Sahoo, B., Rath, S.K., Mahanta, S.K., Arakha, M., 2022. Nanotechnology mediated detection and control of phytopathogens. In: Bio-Nano Interface. (Eds.) Arakha, M., Pradhan, A.K. and Jha, S. Springer, Singapore. pp. 109-125. DOI: https://doi.org/10.1007/978-981-16-2516-9_7.
Saikia, S., Saud, B.K., Dutta, P., Gogoi, A.K., Baruah, S., 2022. Efficacy of green synthesized copper nanoparticles towards leaf spot disease and its effects on vase life of chrysanthemum cv. Snowball. The Pharma Innovation Journal 11(6), 2344-2347.
Singh, R., Kuddus, M., Singh, P.K., Choden, D., 2022. Nanotechnology for Nanophytopathogens: From detection to the management of plant viruses. BioMed Research International 2022, 8688584. DOI: https://doi.org/10.1155/2022/8688584.
Strayer-Scherer, A., Liao, Y.Y., Young, M., Ritchie, L., Vallad, G.E., Santra, S., Freeman, J.H., Clark, D., Jones, J.B., Paret, M.L., 2018. Advanced copper composites against copper-tolerant Xanthomonas perforans and tomato bacterial spot. Phytopathology 108(2), 196-205. DOI: https://doi.org/10.1094/PHYTO-06-17-0221-R.
Tai, C.Y., Tai, C.T., Chang, M.H., Liu, H.S., 2007. Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Industrial & Engineering Chemistry Research 46(17), 5536-5541. DOI: https://doi.org/10.1021/ie060869b.
Tilman, D., Balzer, C., Hill, J., Befort, B.L., 2011. Global food demand and the sustainable intensification of agriculture. PNAS 108(50), 20260-20264. DOI: https://doi.org/10.1073/pnas.1116437108.
Young, M., Ozcan, A., Myers, M.E., Johnson, E.G., Graham, J.H., Santra, S., 2017. Multimodal generally recognized as safe ZnO/nanocopper composite: A novel antimicrobial material for the management of citrus phytopathogens. Journal of Agricultural and Food Chemistry 66(26), 6604-6608. DOI: https://doi.org/10.1021/acs.jafc.7b02526.