
Navigating Climate Change and Its Impacts on Parasitoids, Predators and Pollinators
Sushil Kumar*
ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, Gujarat (396 450), India
DOI: https://doi.org/10.54083/PHA/2.4.2024/115-122
Keywords: Agricultural ecosystems, Climate change, Parasitoid, Plant-Insect interactions, Pollinators, Predators
Abstract
This review considers the numerous consequences in which climate change affects insect pest population, natural enemy and crop production. Direct effects of climate induced changes on insect physiology and behaviour; and biological interactions that may influence the interactions between pests and their natural enemies. These temperature fluctuations will be expected to change diurnal activity patterns and modify interspecific interactions and hence reduce the efficacy of natural enemies. Direct impacts are as a change in temperature, precipitation and carbon dioxide (CO2) concentrations; indirect effects of changes in herbivore and competitor distributions; and changes to higher trophic level interactions, such as predation, parasitism and competition. Even climate change effects on natural enemies become more complicated with changes in the plant physiology by CO2, temperature and moisture. Then, extreme weather events aggravate these complexities as they further make unpredictable interactions between crops, pests, diseases and natural enemies. Such unpredictability is a problem for current crop protection strategies and agricultural yield. This review is intended to highlight the need for adaptive pest control solutions for limiting the damages related with climate change, towards a sustainable agricultural production.
Downloads
not found
Reference
Abewoy, D., 2018. Review on impacts of climate change on vegetable production and its management practices. Advances in Crop Science and Technology 6(1), 330. DOI: https://doi.org/10.4172/2329-8863.1000330.
Abrol, D.P., 2009. Plant-pollinator interactions in the context of climate change - An endangered mutualism. Journal of Palynology 45, 1-25.
Adebesin, F., Widhalm, J.R., Boachon, B., Lefèvre, F., Pierman, B., Lynch, J.H., Alam, I., Junqueira, B., Benke, R., Ray, S., Porter, J.A., Yanagisawa, M., Wetzstein, H.Y., Morgan, J.A., Boutry, M., Schuurink, R.C., Dudareva, N., 2017. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 356(6345), 1386-1388. DOI: https://doi.org/10.1126/science.aan0826.
Anwar, M.R., O’Leary, G., McNeil, D., Hossain, M., Nelson, R., 2007. Climate change impact on rainfed wheat in south-eastern Australia. Field Crops Research 104(1-3), 139-147. DOI: https://doi.org/10.1016/j.fcr.2007.03.020.
Baumert, K.A., Herzog, T., Pershing, J., 2009. Navigating the Numbers: Greenhouse Gas Data and International Climate Policy. World Resources Institute, Washington, DC, USA. p. 122.
Bhruguvanshi, S.R., 2009. Implications of climate change in mango. In: Impact Assessment of Climate Change for Research Priority Planning in Horticultural Crops. Central Potato Research Institute, Shimla (India). pp. 43-46.
Cagan, L., Tancik, J., Hassan, S., 1998. Natural parasitism of the European corn borer eggs Ostrinia nubilalis Hbn. (Lep., Pyralidae) by Trichogramma in Slovakia - need for field releases of the natural enemy. Journal of Applied Entomology 122(1-5), 315-318. DOI: https://doi.org/10.1111/j.1439-0418.1998.tb01504.x.
Calatayud, P.A., Polania, M.A., Seligmann, C.D., Bellotti, A.C., 2002. Influence of water-stressed cassava on Phenacoccus herreni and three associated parasitoids. Entomologia Experimentalis et Applicata 102(2), 163-175. DOI: https://doi.org/10.1046/j.1570-7458.2002.00936.x.
Chakraborty, S., Newton, A.C., 2011. Climate change, plant diseases and food security: An overview. Plant Pathology 60(1), 2-14. DOI: https://doi.org/10.1111/j.1365-3059.2010.02411.x.
Challinor, A.J., Wheeler, T.R., Craufurd, P.Q., Slingo, J.M., 2005. Simulation of the impact of high temperature stress on annual crop yields. Agricultural and Forest Entomology 135(1-4), 180-189. DOI: https://doi.org/10.1016/j.agrformet.2005.11.015.
Choudhary, M.L., Patel, V.B., Siddiqui, M.W., Mahdl, S.S., Verma, R.B., 2015. Climate Dynamics in Horticultural Science, 1st Edition. Apple Academic Press, New York. p. 538. DOI: https://doi.org/10.1201/b18252.
Cleland, E.E., Chuine, I., Menzel, A., Mooney, H.A., Schwartz, M.D., 2007. Shifting plant phenology in response to global change. Trends in Ecology & Evolution 22(7), 357-365. DOI: https://doi.org/10.1016/j.tree.2007.04.003.
Climate Analysis Indicators Tool (CAIT), 2011. CAIT version 8.0; Technical documentation. World Resources Institute, Washington, DC. Available at: http://cait.wri.org. Accessed on: 23 May 2021.
Cock, M.J.W., Biesmeijer, J.C., Cannon, R.J.C., Gerard, P.J., Gillespie, D., Jiménez, J.J., Lavelle, P.M., Raina, S.K., 2013. The implications of climate change for positive contributions of invertebrates to world agriculture. CABI Reviews 8, 28. DOI: https://doi.org/10.1079/PAVSNNR20138028.
Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., van den Belt, M., 1997. The value of the world’s ecosystem services and natural capital. Nature 387, 253-260. DOI: https://doi.org/10.1038/387253a0.
Das, D.K., Singh, J., Vennila, S., 2011. Crop pest emerging scenario under the impact of climate change - A brief review. Journal of Agricultural Physics 11, 13-20.
de Sassi, C., Tylianakis, J.M., 2012. Climate change disproportionately increases herbivore over plant or parasitoid biomass. PLoS ONE 7(7), e40557. DOI: https://doi.org/10.1371/journal.pone.0040557.
Farré-Armengol, G., Penuelas, J., Li, T., Yli-Pirila, P., Filella, I., Llusia, J., Blande, J.D. 2016. Ozone degrades floral scent and reduces pollinator attraction to flowers. New Phytologist 209(1), 152-160. DOI: https://doi.org/10.1111/nph.13620.
Fuhrer, J., 2003. Agroecosystem responses to combinations of elevated CO2, ozone and global climate change. Agriculture Ecosystems & Environment 97(1-3), 1-20. DOI: https://doi.org/10.1016/S0167-8809(03)00125-7.
Gao, F., Zhu, S.R., Sun, Y.C., Du, L., Parajulee, M., Kang, L., Ge, F., 2008. Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossyppii and Propylaea japonica. Environmental Entomology 37(1), 29-37. DOI: https://doi.org/10.1603/0046-225X(2008)37[29:IEOECA]2.0.CO;2.
Gutierrez, A.P., Ponti, L., 2014. Analysis of invasive insects: Links to climate change. In: Invasive Species and Global Climate Change. (Eds.) Ziska L.H. and Dukes J.S. CABI Publishing, Wallingford, UK. pp. 45-61. DOI: https://doi.org/10.1079/9781780641645.0045.
Haggstrom, H., Larsson, S., 1995. Slow larval growth on a suboptimal willow result in high predation mortality in the leaf beetle Galerucella lineola. Oecologia 104, 308-315. DOI: https://doi.org/10.1007/BF00328366.
Hamilton, J.G., Dermody, O., Aldea, M., Zangerl, A.R., Rogers, A., Berenbaum, M.R., Delucia, E.H., 2005. Anthropogenic changes in tropospheric composition increased susceptibility of soybean to insect herbivory. Environmental Entomology 34(2), 479-485. DOI: https://doi.org/10.1603/0046-225X-34.2.479.
Hawkins, B.A., 1994. Pattern and Process in Host-Parasitoid Interactions. Cambridge University Press, New York. DOI: https://doi.org/10.1017/CBO9780511721885.001. (Online: 04 May 2010)
Hawkins, B.A., Sheehan, W., 1994. Parasitoid Community Ecology. Oxford University Press, Oxford. DOI: https://doi.org/10.1093/oso/9780198540588.001.0001. (Online: 31 October 2023)
Heeb, L., Jenner, E., Cock, M.J.W., 2019. Climate-smart pest management: building resilience of farms and landscapes to changing pest threats. Journal of Pest Science 92, 951-969. DOI: https://doi.org/10.1007/s10340-019-01083-y.
Heil, M., 2008. Indirect defence via tritrophic interactions. New Phytologist 178(1), 41-61. DOI: https://doi.org/10.1111/j.1469-8137.2007.02330.x.
Hill, M.G., Dymock, J.J., 1989. Impact of Climate Change: Agricultural/ Horticultural Systems. DSIR Entomology Division, Submission to the New Zealand Climate Change Program. Department of Scientific and Industrial Research, Auckland, New Zealand. p. 16.
Hoover, J.K., Newman, J.A., 2004. Tritrophic interactions in the context of climate change: A model of grasses, cereal aphids and their parasitoids. Global Change Biology 10(7), 1197-1208. DOI: https://doi.org/10.1111/j.1529-8817.2003.00796.x.
Iltis, C., Martel, G., Thiéry, D., Moreau, J., Louapre, P., 2018. When warmer means weaker: High temperatures reduce behavioural and immune defenses of the larvae of a major grapevine pest. Journal of Pest Science 91, 1315-1326. DOI: https://doi.org/10.1007/s10340-018-0992-y.
IPCC, 2007. Fourth Assessment Report: Climate Change 2007. Intergovernmental Panel on Climate Change (IPCC), Geneva.
Karthik, S., Sai Reddy, M.S., Yashaswini, G., 2021. Climate change and its potential impacts on insect-plant interactions. In: The Nature, Causes, Effects and Mitigation of Climate Change on the Environment. (Ed.) Harris, S.A. Intech Open. DOI: https://doi.org/10.5772/intechopen.98203.
Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T., 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274(1608), 303-313. DOI: https://doi.org/10.1098/rspb.2006.3721.
Kudo, G., Nishikawa, Y., Kasagi, T., Kosuge, S., 2004. Does seed production of spring ephemerals decrease when spring comes early? Ecological Research 19, 255-259. DOI: https://doi.org/10.1111/j.1440-1703.2003.00630.x.
Long, S.P., Ainsworth, E.A., Rogers, A., Ort, D.R., 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology 55, 591-628. DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141610.
Murugan, K., 2006. Bio-diversity of insects. Current Science 91(12), 1602-1603. URL: https://www.jstor.org/stable/24094007.
Naranjo, S.E., 1993. The life-history of Trichogrammatoidea bactrae (Hymenoptera: Trichogrammatidae) an egg parasitoid of pink-bollworm (Lepidoptera: Gelechidae), with emphasis on performance at high temperatures. Environmental Entomology 22(5), 1051-1059. DOI: https://doi.org/10.1093/ee/22.5.1051.
Pareek, A., Meena, B.M., Sharma, S., Tetarwal, M.L., Kalyan, R.K., Meena, B.L., 2017. Impact of climate change on insect pests and their management strategies. In: Climate Change and Sustainable Agriculture. (Eds.) Kumar, P.S., Kanwat, M., Meena, P.D., Kumar, V. and Alone, R.A. New India Publishing Agency - Nipa. pp. 253-286.
Pereira, H.M., Leadley, P.W., Proença, V., Alkemade, R., Scharlemann, J.P.W., Fernandez-Manjarrés, J.F., Araújo, M.B., Balvanera, P., Biggs, R., Cheung, W.W.L., Chini, L., Cooper, H.D., Gilman, E.L., Guénette, S., Hurtt, G.C., Huntington, H.P., Mace, G.M., Oberdorff, T., Revenga, C., Rodrigues, P., Scholes, R.J., Sumaila, U.R., Walpole, M., 2010. Scenarios for global biodiversity in the 21st century. Science 330(6010), 1496-1501. DOI: https://doi.org/10.1126/science.1196624.
Price, P.W., 1987. The role of natural enemies in insect populations. In: Insect Outbreaks. (Eds.) Barbosa, P. and Schultz, J.C. Academic Press, San Diego, CA, USA. pp. 287-312.
Sachs, J.D., 2008. Commonwealth: Economics for a Crowded Planet. Penguin Press. p. 400.
Scott, M., Berrigan, D., Hoffmann, A.A., 1997. Costs and benefits of acclimation to elevated temperature in Trichogramma carverae. Entomologia Experimentalis et Applicata 85(3), 211-219. DOI: https://doi.org/10.1046/j.1570-7458.1997.00251.x.
Sequeira, R., Mackauer, M., 1994. Variation in selected life-history parameters of the parasitoid wasp Aphidius ervi influence of host developmental stage. Entomologia Experimentalis et Applicata 71(1), 15-22. DOI: https://doi.org/10.1111/j.1570-7458.1994.tb01765.x.
Sidhu, A.K., Mehta, H.S., 2008. Role of butterflies in the natural ecosystem with special reference to high altitude (Pangi Valley, Himachal Pradesh). In: Proceedings of International Conference on Climate Change, Biodiversity and Food Security in the South Asian Region, 3-4 November 2008. Punjab State Council for Science and Technology, Chandigarh and United Nations Educational, Scientific and Cultural Organization, New Delhi. p. 36.
Singh, H.P., Singh, J.P., Lal, S.S., 2010. Challenges of Climate Change: Indian Horticulture. Westville Publishing House, New Delhi, India. p. 224.
Sthapit, B.R., Ramanatha Rao, V., Sthapit, S.R., 2012. Tropical Fruit Tree Species and Climate Change. Bioversity International, New Delhi, India. p. 142. URL: https://hdl.handle.net/10568/105191.
Thomson, L.J., Macfadyen, S., Hoffmann, A.A., 2010. Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control 52(3), 296-306. DOI: https://doi.org/10.1016/j.biocontrol.2009.01.022.
Thomson, L.J., Robinson, M., Hoffmann, A.A., 2001. Field and laboratory evidence for acclimation without costs in an egg parasitoid. Functional Ecology 15(2), 217-221. DOI: https://doi.org/10.1046/j.1365-2435.2001.00516.x.
Torriani, D.S., Calanca, P., Schmid, S., Beniston, M., Fuhrer, J., 2007. Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Climate Research 34(1), 59-69. DOI: https://doi.org/10.3354/cr034059.
Young, A.M., 1982. Population Biology of Tropical Insects. Plenum Press, Springer, New York, USA. p. 524. DOI: https://doi.org/10.1007/978-1-4684-1113-3.