Article Details

  1. Home
  2. Article Details
image description

PDF

Published

2024-06-14

How to cite

Yusuf, A.M., Umar, A.M., Eberemu, N.C., Auta, T., Wagini, N.H., Gidado, S.M., Yar’adua, Z.A., Matazu, N.U., Suleiman, M., 2024. Optimization of PCR conditions for improved amplification efficiency and specificity on PfHRP2/3 genes deletion in Plasmodium falciparum. Biotica Research Today 6(6), 327-335. DOI: 10.54083/BioResToday/6.6.2024/327-335.

Issue

Vol. 6 No. 6 : June (2024)

Research Articles

License

Copyright (c) 2024 Biotica Research Today

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

HOME / ARCHIVES / Vol. 6 No. 6 : June (2024) / Research Articles

Optimization of PCR Conditions for Improved Amplification Efficiency and Specificity on PfHRP2/3 Genes Deletion in Plasmodium falciparum

Yusuf A.M.*

Dept. of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria

Umar A.M.

Dept. of Biological Sciences, Faculty of Life Sciences, Federal University Dutsinma, Katsina State (PMB 5001), Nigeria

Eberemu N.C.

Dept. of Biological Sciences, Faculty of Life Sciences, Federal University Dutsinma, Katsina State (PMB 5001), Nigeria

Auta T.

Dept. of Biological Sciences, Faculty of Life Sciences, Federal University Dutsinma, Katsina State (PMB 5001), Nigeria

Wagini N.H.

Dept. of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria

Gidado S.M.

Dept. of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria

Zainab A. Yar’adua

Dept. of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria

Matazu N.U.

Dept. of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria

Suleiman M.

Dept. of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, Katsina State (PMB 2218), Nigeria

DOI: https://doi.org/10.54083/BioResToday/6.6.2024/327-335

Keywords: Annealing temperature, DNA template dilution, HotStart PCR, MgCl2 titration, PCR optimization, Primer dimer

Abstract


This study aimed to optimize PCR conditions for improved specificity and sensitivity by investigating the effects of DNA template dilutions, magnesium chloride (MgCl2) titration concentrations, annealing temperatures and primer dimer formation. Real-Time PCR (RT-PCR) assays were conducted and agarose gel electrophoresis and polyacrylamide gel electrophoresis were employed for visualization and analysis of PCR products. For DNA template dilutions, RT-PCR revealed a concentration-dependent decrease in cycle threshold (CT) values, indicating higher initial copy numbers in undiluted DNA samples. Melting curve analysis confirmed single-species template DNA, while agarose gel electrophoresis demonstrated decreasing band intensities with dilution, alongside nonspecific amplification products in all samples. MgCl2 titration concentrations showed optimal amplification at 1.5 mMol and 2 mMol, with weaker amplification at lower concentrations and nonspecific products at higher concentrations. Annealing temperature optimization revealed optimal efficiency at 58 °C and 55 °C, with reduced amplification at extremes and nonspecific products at higher temperatures. Primer dimer formation was observed, affecting amplification specificity, with the lower peak denaturing at a higher temperature indicative of primer dimerisation. Optimization strategies such as HotStart PCR and the use of monoclonal antibodies for Taq polymerase inhibition were discussed for improved specificity. Overall, systematic optimization of PCR conditions is crucial for achieving reliable and reproducible results, with considerations for DNA template concentration, MgCl2 titration, annealing temperature and primer dimer formation essential for enhancing PCR performance.

Downloads


not found

Reference


Akbari, M., Hansen, M.D., Halgunset, J., Skorpen, F., Krokan, H.E., 2005. Low copy number DNA template can render polymerase chain reaction error prone in a sequence-dependent manner. The Journal of Molecular Diagnostics 7(1), 36-39. DOI: https://doi.org/10.1016/S1525-1578(10)60006-2.

Asif, A.A., Hussain, H., Kumaran, S.S., Syed, S.B., Vanka, V., Tharoor, M., Rangwala, U.S., Rathore, U., Singhal, M., Chatterjee, T., 2021. Efficacy of subcutaneous interferon-beta in COVID-19: A meta-analysis and systematic review. Journal of Community Hospital Internal Medicine Perspectives 11(6), 760-768. DOI: https://doi.org/10.1080/20009666.2021.1984644.

Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., Wittwer, C.T., 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55(4), 611-622. DOI: https://doi.org/10.1373/clinchem.2008.112797.

Carbonara, T., Pascale, R., Argentieri, M.P., Papadia, P., Fanizzi, F.P., Villanova, L., Avato, P., 2012. Phytochemical analysis of a herbal tea from Artemisia annua L. Journal of Pharmaceutical and Biomedical Analytics 62, 79-86. DOI: https://doi.org/10.1016/j.jpba.2012.01.015.

Cha, R.S., Thilly, W.G., 1993. Specificity, efficiency and fidelity of PCR. In: PCR Methods and Applications. Genome Research 3(3), S18-S29. DOI: https://doi.org/10.1101/gr.3.3.s18.

Chen, S., Sun, Y., Fan, F., Chen, S., Zhang, Y., Zhang, Y., Meng, X., Lin, J.M., 2022. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. TrAC Trends in Analytical Chemistry 157, 116737. DOI: https://doi.org/10.1016/j.trac.2022.116737.

Cobb, B.D., Clarkson, J.M., 1994. A simple procedure for optimising the polymerase chain reaction (PCR) using modified Taguchi methods. Nucleic Acids Research 22(18), 3801-3805. DOI: https://doi.org/10.1093/nar/22.18.3801.

D’Aquila, R.T., Bechtel, L.J., Videler, J.A., Eron, J.J., Gorczyca, P., Kaplan, J.C., 1991. Maximizing sensitivity and specificity of PCR by pre-amplification heating. Nucleic Acids Research 19(13), 3749. DOI: https://doi.org/10.1093/nar/19.13.3749.

Deepachandi, B., Weerasinghe, S., Soysa, P., Karunaweera, N., Siriwardana, Y., 2019. A highly sensitive modified nested PCR to enhance case detection in leishmaniasis. BMC Infectious Diseases 19, 623. DOI: https://doi.org/10.1186/s12879-019-4180-3.

Deepak, S.A., Kottapalli, K.R., Rakwal, R. oros, G., Rangappa, K.S., Iwahashi, H., Masuo, Y., Agrawal, G.K., 2007. Real-time PCR: Revolutionizing detection and expression analysis of genes. Current Genomics 8(4), 234-251. DOI: https://doi.org/10.2174/138920207781386960.

Erlich, H.A., Griffith, R.L., Bugawan, T.L., Ziegler, R., Alper, C., Eisenbarth, G., 1991. Implication of specific DQB1 alleles in genetic susceptibility and resistance by identification of IDDM siblings with novel HLA-DQB1 allele and unusual DR2 and DR1 haplotypes. Diabetes 40(4), 478-481. DOI: https://doi.org/10.2337/diab.40.4.478.

Fraga, D., Meulia, T., Fenster, S., 2014. Real‐time PCR. Current Protocols Essential Laboratory Techniques 8, 10-40. DOI: https://doi.org/10.1002/9780470089941.et1003s08.

Gibson, U.E., Heid, C.A., Williams, P.M., 1996. A novel method for real time quantitative RT-PCR. Genome Research 6, 995-1001. DOI: https://doi.org/10.1101/gr.6.10.995.

Haanshuus, C.G., Mørch, K., Blomberg, B., Strøm, G.E.A., Langeland, N., Hanevik, K., Mohn, S.C., 2019. Assessment of malaria real-time PCR methods and application with focus on low-level parasitaemia. PloS ONE 14(7), e0218982. DOI: https://doi.org/10.1371/journal.pone.0218982.

Harris, S., Jones, D.B., 1997. Optimisation of the polymerase chain reaction. British Journal of Biomedical Science 54(3), 166-173.

Hecker, K.H., Roux, K.H., 1996. High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. Biotechniques 20(3), 478-485. DOI: https://doi.org/10.2144/19962003478.

Hsiang, M.S., Lin, M., Dokomajilar, C., Kemere, J., Pilcher, C.D., Dorsey, G., Greenhouse, B., 2010. PCR-based pooling of dried blood spots for detection of malaria parasites: Optimization and application to a cohort of Ugandan children. Journal of Clinical Microbiology 48(10), 3539-3543. DOI: https://doi.org/10.1128/JCM.00522-10.

Innis, M.A., Gelfand, D.H., 1990. Optimization of PCRs. In: PCR Protocols: A Guide to Methods and Applications. (Eds.) Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. Academic Press, Elsevier Inc. pp. 3-12. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50005-6.

Karunanathie, H., Kee, P.S., Ng, S.F., Kennedy, M.A., Chua, E.W., 2022. PCR enhancers: Types, mechanisms and applications in long-range PCR. Biochimie 197, 130-143. DOI: https://doi.org/10.1016/j.biochi.2022.02.009.

Kipf, E., Schlenker, F., Borst, N., Fillies, M., Kirschner-Schwabe, R., Zengerle, R., Eckert, C., von Stetten, F., Lehnert, M., 2022. Advanced minimal residual disease monitoring for acute lymphoblastic leukemia with multiplex mediator probe PCR. The Journal of Molecular Diagnostics 24(1), 57-68. DOI: https://doi.org/10.1016/j.jmoldx.2021.10.001.

Kwok, S., Kellogg, D.E., McKinney, N., Spasic, D., Goda, L., Levenson, C., Sninsky, J.J., 1990. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Research 18(4), 999-1005. DOI: https://doi.org/10.1093/nar/18.4.999.

Lam, N.Y.L., Rainer, T.H., Chiu, R.W.K., Lo, Y.M.D., 2004. EDTA is a better anticoagulant than heparin or citrate for delayed blood processing for plasma DNA analysis. Clinical Chemistry 50(1), 256-257. DOI: https://doi.org/10.1373/clinchem.2003.026013.

Liu, Z., Sun, J., Zhao, G., Xiong, S., Ma, Y., Zheng, M., 2021. Transient stem-loop structure of nucleic acid template may interfere with polymerase chain reaction through endonuclease activity of Taq DNA polymerase. Gene 764, 145095. DOI: https://doi.org/10.1016/j.gene.2020.145095.

Lundberg, K.S., Shoemaker, D.D., Adams, M.W.W., Short, J.M., Sorge, J.A., Mathur, E.J., 1991. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108(1), 1-6. DOI: https://doi.org/10.1016/0378-1119(91)90480-Y.

Maeda, H., Fujimoto, C., Haruki, Y., Maeda, T., Kokeguchi, S., Petelin, M., Arai, H., Tanimoto, I., Nishimura, F., Takashiba, S., 2003. Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunology & Medical Microbiology 39(1), 81-86. DOI: https://doi.org/10.1016/S0928-8244(03)00224-4.

Mamedov, T.G., Pienaar, E., Whitney, S.E., TerMaat, J.R., Carvill, G., Goliath, R., Subramanian, A., Viljoen, H.J., 2008. A fundamental study of the PCR amplification of GC-rich DNA templates. Computational Biology and Chemistry 32(6), 452-457. DOI: https://doi.org/10.1016/j.compbiolchem.2008.07.021.

Markoulatos, P., Siafakas, N., Moncany, M., 2002. Multiplex polymerase chain reaction: A practical approach. Journal of Clinical Laboratory Analysis 16(1), 47-51. DOI: https://doi.org/10.1002/jcla.2058.

Maruf, S., Sagar, S.K., Rashid, M.M.U., Nath, P., Islam, M.S., Ghosh, P., Rashid, M.U., Mondal, D., El Wahed, A.A., Basher, A., 2023. Revisiting the diagnosis and treatment of Para Kala-azar Dermal Leishmaniasis in the endemic foci of Bangladesh. PLoS ONE 18(1), e0280747. DOI: https://doi.org/10.1371/journal.pone.0280747.

Mohammadiha, A., Dalimi, A., Mahmoodi, M.R., Parian, M., Pirestani, M., Mohebali, M., 2017. The PCR-RFLP-based detection and identification of the Leishmania species causing human Cutaneous leishmaniasis in the Khorasan-Razavi Province, Northeast of Iran. Journal of Arthropod-Borne Diseases 11(3), 383-392.

Ordóñez, C.D., Redrejo-Rodríguez, M., 2023. DNA polymerases for whole genome amplification: Considerations and future directions. International Journal of Molecular Sciences 24(11), 9331. DOI: https://doi.org/10.3390/ijms24119331.

Paul, N., Shum, J., Le, T., 2010. Hot start PCR. In: RT-PCR Protocols: Second Edition, Methods in Molecular Biology, Volume 630. (Eds.) King, N. Humana Press, Totowa, NJ. pp. 301-318. DOI: https://doi.org/10.1007/978-1-60761-629-0_19.

Pomp, D., Medrano, J.F., 1991. Organic solvents as facilitators of polymerase chain reaction. Biotechniques 10(1), 58-59.

Rajalakshmi, S., 2017. Different types of PCR techniques and its applications. International Journal of Pharmaceutical, Chemical and Biological Sciences 7(3), 285-292.

Roux, K.H., 1995. Optimization and troubleshooting in PCR. In: PCR Methods and Applications. Genome Research 4(5), S185-S194. DOI: https://doi.org/10.1101/gr.4.5.S185.

Rychlik, W., Spencer, W.J., Rhoads, R.E., 1990. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Research 18(21), 6409-6412. DOI: https://doi.org/10.1093/nar/18.21.6409.

Salam, M.A., Mondal, D., Kabir, M., Ekram, A.R.M.S., Haque, R., 2010. PCR for diagnosis and assessment of cure in kala-azar patients in Bangladesh. Acta Tropica 113(1), 52-55. DOI: https://doi.org/10.1016/j.actatropica.2009.09.005.

Samal, K.C., Ramakrishna, B., Sahoo, J.P., Behera, L., 2022. Molecular characterization and validation of micro-satellite markers linked to powdery mildew disease resistance in mini core germplasm of Urdbean [Vigna mungo (L.) Hepper]. Research Biotica 4(2), 62-68. DOI: https://doi.org/10.54083/ResBio/4.2.2022/62-68.

Sathyanarayana, S.H., Wainman, L.M., 2024. Laboratory approaches in molecular pathology: The polymerase chain reaction. Chapter 2. In: Diagnostic Molecular Pathology: A Guide to Applied Molecular Testing, Second Edition. (Eds.) Coleman, W.B. and Tsongalis, G.J. Academic Press, Elsevier Inc. pp. 13-25. DOI: https://doi.org/10.1016/B978-0-12-822824-1.00041-9.

Stift, G., Pachner, M., Lelley, T., 2003. Comparison of RAPD fragments separation in agarose and polyacrylamide gel by studying Cucurbita species. Cucurbit Genetics Cooperative Report 26, 62-65.

Taylor, S.C., Carbonneau, J., Shelton, D.N., Boivin, G., 2015. Optimization of droplet digital PCR from RNA and DNA extracts with direct comparison to RT-qPCR: Clinical implications for quantification of Oseltamivir-resistant subpopulations. Journal of Virological Methods 224, 58-66. DOI: https://doi.org/10.1016/j.jviromet.2015.08.014.

Teimouri, A., Mohebali, M., Kazemirad, E., Hajjaran, H., 2018. Molecular identification of agents of human Cutaneous leishmaniasis and canine visceral leishmaniasis in different areas of Iran using internal transcribed spacer 1 PCR-RFLP. Journal of Arthropod-Borne Diseases 12(2), 162-171. DOI: https://doi.org/10.18502/jad.v12i2.42.

Toz, S.O., Culha, G., Zeyrek, F.Y., Ertabaklar, H., Alkan, M.Z., Vardarli, A.T., Gunduz, C., Ozbel, Y., 2013. A real-time ITS1-PCR based method in the diagnosis and species identification of Leishmania parasite from human and dog clinical samples in Turkey. PLoS Neglected Tropical Diseases 7(5), e2205. DOI: https://doi.org/10.1371/journal.pntd.0002205.

Wittwer, C.T., Herrmann, M.G., Moss, A.A., Rasmussen, R.P., 1997. Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22(1), 130-138. DOI: https://doi.org/10.2144/97221bi01.

Yehia, L., Adib-Houreih, M., Raslan, W.F., Kibbi, A.G., Loya, A., Firooz, A., Satti, M., El-Sabban, M., Khalifeh, I., 2012. Molecular diagnosis of Cutaneous leishmaniasis and species identification: Analysis of 122 biopsies with varied parasite index. Journal of Cutaneous Pathology 39(3), 347-355. DOI: https://doi.org/10.1111/j.1600-0560.2011.01861.x.

Zang, P., Xu, Q., Li, C., Tao, M., Zhang, Z., Li, J., Zhang, W., Li, S., Li, C., Yang, Q., Guo, Z., Yao, J., Zhou, L., 2024. Self-correction of cycle threshold values by a normal distribution-based process to improve accuracy of quantification in real-time digital PCR. Analytical and Bioanalytical Chemistry 416, 2453-2464. DOI: https://doi.org/10.1007/s00216-024-05208-w.

Zarlenga, D.S., Higgins, J., 2001. PCR as a diagnostic and quantitative technique in veterinary parasitology. Veterinary Parasitology 101(3-4), 215-230. DOI: https://doi.org/10.1016/S0304-4017(01)00568-4.

Zheng, J., Guo, N., Huang, Y., Guo, X., Wagner, A., 2024. High temperature delays and low temperature accelerates evolution of a new protein phenotype. Nature Communications 15, 2495. DOI: https://doi.org/10.1038/s41467-024-46332-6.