
Properties of Termite Mounds and Its Impact on Crop Growth: A Review
Shiney Kathbaruah*
Dept. of Entomology, Assam Agricultural University, Jorhat, Assam (785 001), India
Badal Bhattacharyya
Dept. of Entomology, Assam Agricultural University, Jorhat, Assam (785 001), India
K. Sindhura Bhairavi
Dept. of Entomology, Assam Agricultural University, Jorhat, Assam (785 001), India
DOI: https://doi.org/10.54083/BRT/7.1.2025/28-32
Keywords: Biological, Crop growth, Enzyme, Physico-chemical, Termite mound soil
Abstract
Termite mounds, though more often than not neglected, are one of the most ideal naturally occurring biofertilizers, found throughout the tropics. Although termites are damaging in nature, their termitaria is a storehouse of packed nutrients and beneficial microorganisms. Its physico-chemical and biological characteristics surpass those of the surrounding soil. Additionally, they are also helpful in soil nutrient cycling and are excellent ecosystem engineers. This article emphasizes on various studies conducted by workers to analyze its properties and its impact on crop growth. Due to its eco-friendly and sustainable nature, it will assist in reducing production costs and hence is a viable option to be used in farming practices.
Downloads
not found
Reference
Adebajo, S.O., Akintokun, P.O., Ezaka, E., Ojo, A.E., Olannye, D.U., Ayodeji, O.D., 2021. Use of termitarium soil as a viable source for biofertilizer and biocontrol. Bulletin of the National Research Centre 45, 100. DOI: https://doi.org/10.1186/s42269-021-00560-8.
Adugna, W.T., Lellisa, A., Tilahun, A., 2016. The impacts of mound-building termites on micronutrients and soil hydraulic properties in parts of Borana lowlands southern Ethiopia. International Journal of Natural Resource Ecology and Management 1(2), 32-41. DOI: https://doi.org/10.11648/j.ijnrem.20160102.14.
Ahmed, J.B.I.I., Pradhan, B., Mansor, S., Tongjura, J.D.C., Yusuf, B., 2019. Multi-criteria evaluation of suitable sites for termite mounds construction in a tropical lowland. Catena 178, 359-371. DOI: https://doi.org/10.1016/j.catena.2019.03.040.
Ashraf, A., Qureshi, N.A., Shaheen, N., Iqbal, A., Fatima, H., Afzal, M., Saleh, S.A., Qureshi, M.Z., 2020. Termiticidal and protozocidal potentials of eight tropical plant extracts evaluated against Odontotermes obesus Rambur (Blattodea; Termitidae) and Heterotermes indicola Wasmann (Blattodea; Rhinotermitidae). Polish Journal of Environmental Studies 29(5), 3493-3507. DOI: https://doi.org/10.15244/pjoes/116105.
Bachha, B., Sahoo, S., Mishra, S.S., Kusum, A., 2022. Physicochemical properties and biochemical activities of termitaria soil of Odontotermes spp. and surrounding soil in Sambalpur district, Odisha, India. Journal of Entomology and Zoology Studies 10(2), 124-128. DOI: https://doi.org/10.22271/j.ento.2022.v10.i2b.8978.
Baig, M.M., Prabhu, D.I.G., Rout, A.K., Pandey, J.P., Jena, K.B., Mittal, V., Ravi, R., Singh, G.P., Sinha, A.K., 2018. Termite diversity in tasar ecosystem of Jharkhand: A first report. Multilogic in Science 8(D), 117-119.
Bekele, A., Beyene, S., Yimer, F., Kiflu, A., 2024. Numerical classification of termite-mediated soils along toposequences and rangeland use influenced soil properties in southeast Ethiopia. Heliyon 10(1), e23726. DOI: https://doi.org/10.1016/j.heliyon.2023.e23726.
Bera, D., Bera, S., Chatterjee, N.D., 2020. Termite mound soil properties in West Bengal, India. Geoderma Regional 22, e00293. DOI: https://doi.org/10.1016/j.geodrs.2020.e00293.
Beyene, T., Getu, E., 2021. Some physicochemical properties of termite mound soil and its effect on yield and yield components of maize (Zea mays L.) under greenhouse condition at Nekemte, Western Ethiopia. Ethiopian Journal of Science 44(1), 38-46. DOI: https://doi.org/10.4314/sinet.v44i1.4.
Bhattacharyya, B., Mishra, H., Gogoi, D., Bhagawati, S., 2014. Management of termite in preserved setts of sugarcane (Saccharum officinarum) with microbes. Current Advances in Agricultural Sciences 6(2), 176-179. DOI: https://doi.org/10.5958/2394-4471.2014.00014.8.
Bignell, D.E., Eggleton, P., 2000. Termites in ecosystems. In: Termites: Evolution, Sociality, Symbiosis, Ecology, 1st Edition. (Eds.) Abe, T., Bignell, D.E. and Higashi, H. Kluwer Academic Publishers, Springer, Dordrecht. pp. 363-387. DOI: https://doi.org/10.1007/978-94-017-3223-9_18.
Brossard, M., Lopez-Hernandez, D., Lepage, M., Leprun, J.C., 2007. Nutrient storage in soils and nests of mound-building Trinervitermes termites in Central Burkina Faso: consequences for soil fertility. Biology and Fertlity of Soils 43(4), 437-447. DOI: https://doi.org/10.1007/s00374-006-0121-6.
Cheik, S., Harit, A., Bottinelli, N., Jouquet, P., 2022. Bioturbation by dung beetles and termites. Do they similarly impact soil and hydraulic properties? Pedobiologia 95, 150845. DOI: https://doi.org/10.1016/j.pedobi.2022.150845.
Chen, C., Singh, A.K., Yang, B., Wang, H., Liu, W., 2023. Effect of termite mounds on soil microbial communities and microbial processes: Implications for soil carbon and nitrogen cycling. Geoderma 431, 116368. DOI: https://doi.org/10.1016/j.geoderma.2023.116368.
Chimdi, M., Kenea, O., Regasa, T., 2021. Effect of termite mound soil on growth and yield of sweet potato (Ipomoea batatas) in Western Ethiopia. Journal of Agricultural Science and Engineering 7(1), 8-13.
Chisanga, K., Mbega, E.R., Ndakidemi, P.A., 2020. Prospects of using termite mound soil organic amendment for enhancing soil nutrition in Southern Africa. Plants 9(5), 649. DOI: https://doi.org/10.3390/plants9050649.
Clarke, C.E., Francis, M.L., Sakala, B.J., Hattingh, M., Miller, J.A., 2023. Enhanced carbon storage in semi-arid soils through termite activity. Catena 232, 107373. DOI: https://doi.org/10.1016/j.catena.2023.107373.
de Lima, S.S., Pereira, M.G., Pereira, R.N., de Pontes, R.M., Rossi, C.Q., 2018. Termite mounds effects on soil properties in the Atlantic forest biome. Revista Brasileria de Ciencia do Solo 42, e0160564. DOI: https://doi.org/10.1590/18069657rbcs20160564.
Dhembare, A.J., 2013. Physico-chemical properties of termite mound soil. Archives of Applied Science Research 5(6), 123-126.
Dhembare, A.J., 2014. Impact of termite activity on physico-chemical properties of mound soil. Central Europian Journal of Experimental Biology 3(1), 25-28.
Eze, P.N., Kokwe, A., Eze, J.U., 2020. Advances in nanoscale study of organomineral complexes of termite mounds and associated soils: a systematic review. Applied and Environmental Soil Science 2020(1), 1-9. DOI: https://doi.org/10.1155/2020/8087273.
Fageria, N.K., Baligar, V.C., 2004. Properties of termite mound soils and responses of rice and bean to nitrogen, phosphorus and potassium fertilization on such soil. Communications in Soil Science and Plant Analysis 35(15), 2097-2109. DOI: https://doi.org/10.1081/LCSS-200028919.
Francis, M.L., Palcsu, L., Molnar, M., Kertesz, T., Clarke, C.E., Miller, J.A., Gend, J.V., 2024. Calcareous termite mounds in South Africa are ancient carbon reservoirs. Science of the Total Environment 926, 171760. DOI: https://doi.org/10.1016/j.scitotenv.2024.171760.
Garba, M., Cornelis, W., Steppe, K., 2011. Effect of termite mound material on the physical properties of sandy soil and on the growth characteristics of tomato (Solanum lycopersicum L.) in semi-arid Niger. Plant and Soil 338(1), 451-466. DOI: https://doi.org/10.1007/s11104-010-0558-0.
Hota, S., Sahoo, S., 2021. A comparative study of gut enzymes and nest materials of three mound building termites of Eastern India. Journal of the Entomological Research Society 23(3), 187-196. DOI: https://doi.org/10.51963/jers.v23i3.1962.
Ibrahim, A.K., Abubakar, T., Bappah, M., Muhammad, Z., 2022. Soil physical and chemical properties of termite mound and their adjacent soil in Kashere Akko local government, Gombe state, Nigeria. International Journal of Agriculture and Rural Development 25(2), 6450-6456.
ICAR, 2017. Termite expert. ICAR National Fellow Project, Division of Entomology, ICAR-IARI, New Delhi, India. p. 26.
Iroegbulam, K.O., 2021. Agronomic potentials of mound of Nasute termite for garden egg production. In: Michael Okpara, University of Agriculture, Umudike, online repository. Available at: https://repository.mouau.edu.ng.com. Accessed on: 22nd September, 2023.
Jose, S., Maya, P.M., 2020. Physico-chemical properties and plant growth analysis in termite mound soil and normal soil. Indian Journal of Applied Research 10(4), 28-29. DOI: https://doi.org/10.36106/ijar.
Jouquet, P., Guilleux, N., Shanbhag, R.R., Subramanian, S., 2015. Influence of soil type on the properties of termite mound nests in southern India. Applied Soil Ecology 96, 282-287. DOI: https://doi.org/10.1016/j.apsoil.2015.08.010.
Kavyashree, R.K., Murugan, S., Namratha, A., 2022. Termite mounds’ diversity and distribution: A study at Jnanabharathi, Bangalore University. International Journal of Forest, Animal and Fisheries Research 6(4), 2456-8791. DOI: https://doi.org/10.22161/ijfaf.6.4.2.
Kamaraj, S., Pandiaraj, T., Malliga, C., Srivastava, P.P., Madhusudhan, K.N., Zuinama, L., Sinha, A.K., 2018. Physico-chemical properties of termite mound soils and their foliar spray on Terminalia arjuna plant. Chemical Science Review and Letters 7(26), 594-598.
Kathbaruah, S., Bhattacharyya, B., Borkataki, S., Gogoi, B., Hatibarua, P., Gogoi, S., Bhairavi, K.S., Dutta, P., 2024. Termite mound soil based potting media: a better approach towards sustainable agriculture. Frontiers in Microbiology 15, 1387434. DOI: https://doi.org/10.3389/fmicb.2024.1387434.
Khan, M.A., Ahmad, W., 2018. Termites: An overview. In: Termites and Sustainable Management. (Eds.) Khan, M. and Ahmad, W. Sustainability in Plant and Crop Protection. Springer, Cham. pp. 1-25. DOI: https://doi.org/10.1007/978-3-319-72110-1_1.
Miyagawa, S., Koyama, Y., Kokubo, M., Matsushita, Y., Adachi, Y., Sivilay, S., Kawakubo, N., Oba, S., 2011. Indigenous utilization of termite mounds and their sustainability in a rice growing village of the central plain of Laos. Journal of Ethnobiology and Ethnomedicine 7, 24. DOI: https://doi.org/10.1186/1746-4269-7-24.
Mokossesse, J.A., Josens, G., Mboukoulida, J., Ledent, J.F., 2012. Effect of field application of Cubitermes (Isoptera, Termitidae) mound soil on growth and yield of maize in Central African Republic. African Agronomy 24(3), 241-252.
Momah, M., Obayanju, O.A., Alonge, O.O., Okieimen, F.E., 2018. Soil physicochemical properties in termite mound soil and surrounding top soil samples from Ika area of Delta State, Nigeria. Journal of Chemical Society of Nigeria 43(4), 783-791.
Mullins, A., Chouvenc, T., Su, N.Y., 2021. Soil organic matter is essential for colony growth in subterranean termites. Scientific Reports 11, 21252. DOI: https://doi.org/10.1038/s41598-021-00674-z.
Paul, B.B., Rueben, J.M., 2005. Arizona Termites of Economic Importance. University of Arizona Press, Tucson, AZ. pp. 9-17.
Roose-Amsaleg, C., Mora, P., Harry, M., 2005. Physical, chemical and phosphatase activities characteristics in soil-feeding termite nests and tropical rainforest soils. Soil Biology and Biochemistry 37(10), 1910-1917. DOI: https://doi.org/10.1016/j.soilbio.2005.02.031.
Santoshkumar, S., Gomathi, V., Anandham, R., Meenakshisundaram, P., Mary, J.K., 2020. Evaluating lignocellulosic enzyme activity of termite mound soil from different locations of Tamil Nadu. Journal of Pharmacognosy and Phytochemistry 9(6), 762-764. DOI: https://doi.org/10.22271/phyto.2020.v9.i6k.13034.
Santoshkumar, S., Gomathi, V., Meenakshisundaram, P., Mary, J.K., 2024. Comparative insights of soil properties of termite hill in relation to the microbial community using culture-independent approach. Total Environment Advances 9, 200094. DOI: https://doi.org/10.1016/j.teadva.2023.200094.
Seetapong, N., Chulok, S., Thongkhong, V., 2021. Physical properties of termite mound soil in para rubber plantation of southern border provinces. Journal of Physics: Conference Series 1719, 012038. DOI: https://doi.org/10.1088/1742-6596/1719/1/012038.
Shanbhag, R.R., Kabbaj, M., Sundararaj, R., Jouquet, P., 2017. Rainfall and soil properties influence termite mound abundance and height: A case study with Odontotermes obesus (Macrotermitinae) mounds in the Indian Western Ghats forests. Applied Soil Ecology 111, 33-38. DOI: https://doi.org/10.1016/j.apsoil.2016.11.011.
Subi, S., Sheela, A.M., 2020. Microbial activity and cellulose degraders in termite mound soil. International Journal of Current Microbiology Applied Sciences 9(7), 2154-2161. DOI: https://doi.org/10.20546/ijcmas.2020.907.251.
Sujada, N., Sungthong, R., Lumyong, S., 2014. Termite nests as an abundant source of cultivable actinobacteria for biotechnological purposes. Microbes and Environments 29(2), 211-219. DOI: https://doi.org/10.1264/jsme2.me13183.
Traore, S., Guebre, D., Hien, E., Traore, M., Lee, N., Lorenz, N., Dick, R.P., 2022. Nutrient cycling and microbial responses to termite and earthworm activity in soils amended with woody residues in the Sudano-Sahel. European Journal of Soil Biology 109, 103381. DOI: https://doi.org/10.1016/j.ejsobi.2021.103381.
Ugbomeh, A.P., Diboyesuku, A.T., 2019. Studies on termite infestation of buildings in Ase, a rural community in the Niger Delta of Nigeria. The Journal of Basic and Applied Zoology 80, 27. DOI: https://doi.org/10.1186/s41936-019-0100-8.