Article Details

  1. Home
  2. Article Details
image description

PDF

Published

2023-10-14

How to cite

Sharma, N.K., Meena, V.K., Choudhary, K., 2023. Revolutionizing plant breeding: The power of bioinformatics applications. Biotica Research Today 5(10), 729-731.

Issue

License

Copyright (c) 2024 Biotica Research Today

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

HOME / ARCHIVES / Vol. 5 No. 10 : October (2023) / Popular Article

Revolutionizing Plant Breeding: The Power of Bioinformatics Applications

Nitesh Kumar Sharma

Division of Agricultural Bioinformatics, ICAR-IASRI, Pusa, New Delhi (110 012), India

Vijay Kamal Meena

Agricultural Research Sub-Station (Sumerpur), Agriculture University, Jodhpur, Rajasthan (306 902), India

Kapil Choudhary*

College of Agriculture (Sumerpur), Agriculture University, Jodhpur, Rajasthan (306 902), India

DOI: NIL

Keywords: Bioinformatics-driven breeding, Crop resilience, Data-driven selection, Genomics

Abstract


The field of plant breeding stands on the brink of a transformative revolution, driven by the integration of bioinformatics applications. This abstract explores the profound impact of bioinformatics in reshaping traditional breeding techniques. Leveraging genomics, transcriptomics and computational tools, researchers can now decode the genetic intricacies of plants with unprecedented precision. By analyzing vast datasets, bioinformatics facilitates the identification of desirable traits, accelerates breeding cycles and enhances crop yield and quality. Furthermore, it enables the development of resilient, climate-smart cultivars. This paradigm shift underscores the pivotal role of bioinformatics in ensuring food security, sustainability and innovation in agriculture, heralding a new era of plant breeding.

Downloads


not found

Reference


Aleksandrov, V., 2022. Identification of nutrient deficiency in plants by artificial intelligence. Acta Physiologiae Plantarum 44(3), 29. DOI: https://doi.org/10.1007/s11738-022-03363-0.

Hu, J., Chen, B., Zhao, J., Zhang, F., Xie, T., Xu, K., Gao, G., Yan, G., Li, H., Li, L., Ji, G., An, H., Li, H., Huang, Q., Zhang, M., Wu, J., Song, W., Zhang, X., Luo, Y., Pires, J.C., Batley, J., Tian, S., Wu, X., 2022. Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nature Genetics 54(5), 694-704. DOI: https://doi.org/10.1038/s41588-022-01055-6.

Li, P., Su, J., Guan, Z., Fang, W., Chen, F., Zhang, F., 2018. Association analysis of drought tolerance in cut chrysanthemum (Chrysanthemum morifolium Ramat.) at seedling stage. 3 Biotech 8, 226. DOI: https://doi.org/10.1007/s13205-018-1258-3.

Raju, S.K.K., Adkins, M., Enersen, A., de Carvalho, D.S., Studer, A.J., Ganapathysubramanian, B., Schnable, P.S., Schnable, J.C., 2020. Leaf Angle eXtractor: A high‐throughput image processing framework for leaf angle measurements in maize and sorghum. Applications in Plant Sciences 8(8), e11385. DOI: https://doi.org/10.1002/aps3.11385.

Wurtzel, E.T., Kutchan, T.M., 2016. Plant metabolism, the diverse chemistry set of the future. Science 353(6305), 1232-1236. DOI: https://doi.org/10.1126/science.aad2062.