Revolutionizing Plant Breeding: The Power of Bioinformatics Applications
Nitesh Kumar Sharma
Division of Agricultural Bioinformatics, ICAR-IASRI, Pusa, New Delhi (110 012), India
Vijay Kamal Meena
Agricultural Research Sub-Station (Sumerpur), Agriculture University, Jodhpur, Rajasthan (306 902), India
Kapil Choudhary*
College of Agriculture (Sumerpur), Agriculture University, Jodhpur, Rajasthan (306 902), India
DOI: NIL
Keywords: Bioinformatics-driven breeding, Crop resilience, Data-driven selection, Genomics
Abstract
The field of plant breeding stands on the brink of a transformative revolution, driven by the integration of bioinformatics applications. This abstract explores the profound impact of bioinformatics in reshaping traditional breeding techniques. Leveraging genomics, transcriptomics and computational tools, researchers can now decode the genetic intricacies of plants with unprecedented precision. By analyzing vast datasets, bioinformatics facilitates the identification of desirable traits, accelerates breeding cycles and enhances crop yield and quality. Furthermore, it enables the development of resilient, climate-smart cultivars. This paradigm shift underscores the pivotal role of bioinformatics in ensuring food security, sustainability and innovation in agriculture, heralding a new era of plant breeding.
Downloads
not found
Reference
Aleksandrov, V., 2022. Identification of nutrient deficiency in plants by artificial intelligence. Acta Physiologiae Plantarum 44(3), 29. DOI: https://doi.org/10.1007/s11738-022-03363-0.
Hu, J., Chen, B., Zhao, J., Zhang, F., Xie, T., Xu, K., Gao, G., Yan, G., Li, H., Li, L., Ji, G., An, H., Li, H., Huang, Q., Zhang, M., Wu, J., Song, W., Zhang, X., Luo, Y., Pires, J.C., Batley, J., Tian, S., Wu, X., 2022. Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nature Genetics 54(5), 694-704. DOI: https://doi.org/10.1038/s41588-022-01055-6.
Li, P., Su, J., Guan, Z., Fang, W., Chen, F., Zhang, F., 2018. Association analysis of drought tolerance in cut chrysanthemum (Chrysanthemum morifolium Ramat.) at seedling stage. 3 Biotech 8, 226. DOI: https://doi.org/10.1007/s13205-018-1258-3.
Raju, S.K.K., Adkins, M., Enersen, A., de Carvalho, D.S., Studer, A.J., Ganapathysubramanian, B., Schnable, P.S., Schnable, J.C., 2020. Leaf Angle eXtractor: A high‐throughput image processing framework for leaf angle measurements in maize and sorghum. Applications in Plant Sciences 8(8), e11385. DOI: https://doi.org/10.1002/aps3.11385.
Wurtzel, E.T., Kutchan, T.M., 2016. Plant metabolism, the diverse chemistry set of the future. Science 353(6305), 1232-1236. DOI: https://doi.org/10.1126/science.aad2062.