Article Details

  1. Home
  2. Article Details
image description

PDF

Published

2022-04-27

How to cite

Kaviraj, M., Kumar, U., Chatterjee, S., 2022. Rice root exudation: Signalling and behavior of shaping the DNRA microbiome. Research Biotica 4(2), 37-41. DOI: 10.54083/ResBio/4.2.2022/37-41.

Issue

License

Copyright (c) 2024 Research Biotica

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

HOME / ARCHIVES / Vol. 4 No. 2 : April-June (2022) / Review Articles

Rice Root Exudation: Signalling and Behavior of Shaping the DNRA Microbiome

Megha Kaviraj

ICAR-National Rice Research Institute, Cuttack, Odisha (753 006), India & The University of Burdwan, Burdwan, West Bengal (713 104), India

Upendra Kumar*

ICAR-National Rice Research Institute, Cuttack, Odisha (753 006), India

Soumendranath Chatterjee

The University of Burdwan, Burdwan, West Bengal (713 104), India

DOI: https://doi.org/10.54083/ResBio/4.2.2022/37-41

Keywords: Ammonium (DNRA) pathway, Dissimilatory nitrate reduction, Microbiome, Rice, Root exudates, Signalling

Abstract


In natural ecosystems, plant health is mainly dependent on interactions with diverse and dynamic soil microbial communities. The microbial communities particularly those associated with nitrogen (N) cycling pathway inhabiting in rice field ecosystem have been described previously. Although, little is known about the taxonomic microbial players involved with dissimilatory nitrate reduction to ammonium (DNRA), a short-circuit N retention pathway in terrestrial N cycle. Therefore, we have to focus on how rice plants shape DNRA bacteria and how they alter over the course of several rice growth stages. Besides, we also shed lights on rice root physiology and the role of root exudates to address plant physiological aspects that may influence plant-microbe interactions.

Downloads


not found

Reference


Baldwin, I.T., Halitschke, R., Paschold, A., von Dahl, C.C., Preston, C.A., 2006. Volatile signalling in plant-plant interactions: “Talking Trees” in the genomics era. Science 311(5762), 812-815. DOI: https://doi.org/10.1126/science.1118446.

Baral, B., Izaguirre-Mayoral, M.L., 2017. Purine-derived ureides under drought and salinity. Advances in Agronomy 146, 167-204. DOI: https://doi.org/10.1016/bs.agron.2017.07.001.

Breidenbach, B., Conrad, R., 2015. Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage. Frontiers in Microbiology 5, 752. DOI: https://doi.org/10.3389/fmicb.2014.00752.

Brune, A., Frenzel, P., Cypionka, H., 2000. Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiology Reviews 24(5), 691-710. DOI: https://doi.org/10.1111/j.1574-6976.2000.tb00567.x.

Cardinale, M., Grube, M., Erlacher, A., Quehenberger, J., Berg, G., 2015. Bacterial networks and co‐occurrence relationships in the lettuce root microbiota. Environmental Microbiology 17(1), 239-252. DOI: https://doi.org/10.1111/1462-2920.12686.

Chen, Y., Bonkowski, M., Shen, Y., Griffiths, B.S., Jiang, Y., Wang, X., Sun, B., 2020. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants. Microbiome 8(1), 4.

Dannenberg, S., Conrad, R., 1999. Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 45(1), 53-71.

DeAngelis, K.M., Ji, P., Firestone, M.K., Lindow, S.E., 2005. Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere. Applied and Environmental Microbiology 71(12), 8537-8547.

Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., Sundaresan, V., 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences 112(8), E911-E920.

Fang, Y.Y., Babourina, O., Rengel, Z., Yang, X.E., Pu, P.M., 2007. Ammonium and nitrate uptake by the floating plant Landoltia punctata. Annals of Botany 99, 365-370. DOI: https://doi.org/10.1093/aob/mcl264.

Grabarczyk, M., Wi_nska, K., Mączka, W., Potaniec, B., Anioł, M., 2015. Loliolide - the most ubiquitous lactone. Folia Biologica Et Oecologica 11, 1-8. DOI: https://doi.org/10.1515/fobio-2015-0001.

Huang, W., Gfeller, V., Erb, M., 2019. Root volatiles in plant-plant interactions II: Root volatiles alter root chemistry and plant-herbivore interactions of neighbouring plants. Plant, Cell and Environment 42(6), 1964-1973. DOI: https://doi.org/10.1111/pce.13534.

Jones, D.L., Nguyen, C., Finlay, R.D., 2009. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant and Soil 321(1), 5-33.

Kawasaki, A., Donn, S., Ryan, P.R., Mathesius, U., Devilla, R., Jones, A., Watt, M., 2016. Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PloS One 11(10), 0164533. DOI: https://doi.org/10.1371/journal.pone.0164533.

Kong, C.H., Zhang, S.Z., Li, Y.H., Xia, Z.C., Yang, X.F., Meiners, S.J., Wang, P., 2018. Plant neighbor detection and allelochemical response are driven by root-secreted signalling chemicals. Nature Communications 9(1), 3867.

Lee, H.J., Jeong, S.E., Kim, P.J., Madsen, E.L, Jeon, C.O., 2015. High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy. Frontiers in Microbiology 6, 639. DOI: https://doi.org/10.3389/fmicb.2015.00639.

Li, L.L., Zhao, H.H., Kong, C.H., 2020. (-)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy. Journal of Experimental Botany 71(4), 1540-1550. DOI: https://doi.org/10.1093/jxb/erz497.

Lu, Y., Wassmann, R., Neue, H.U., Huang, C., Bueno, C.S., 2000. Methanogenic responses to exogenous substrates in anaerobic rice soils. Soil Biology and Biochemistry 32, 1683-1690. DOI: https://doi.org/10.1016/S0038-0717(00)00085-7.

Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Rio, T.G.D., Edgar, R.C., 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409), 86-90.

Machin, D.C., Hamon-Josse, M., Bennett, T., 2020. Fellowship of the rings: A saga of strigolactones and other small signals. New Phytologist 225(2), 621-636. DOI: https://doi.org/10.1111/nph.16135.

Massalha, H., Korenblum, E., Malitsky, S., Shapiro, O.H., Aharoni, A., 2017. Live imaging of root–bacteria interactions in a microfluidics setup. Proceedings of the National Academy of Sciences 114(17), 4549-4554. DOI: https://doi.org/10.1073/pnas.1618584114.

Murata, M., Nakai, Y., Kawazu, K., Ishizaka, M., Kajiwara, H., Abe, H., Takeuchi, K., Ichinose, Y., Mitsuhara, I., Mochizuki, A., Seo, S., 2019. Loliolide, a carotenoid metabolite, is a potential endogenous inducer of herbivore resistance. Plant Physiology 179(4), 1822-1833. DOI: https://doi.org/10.1104/pp.18.00837.

Neumann, G., Martinoia, E., 2002. Cluster roots - an underground adaptation for survival in extreme environments. Trends in Plant Science 7, 162-167. DOI: https://doi.org/10.1016/S1360-1385(02)02241-0.

Niboyet, A., Barthes, L., Hungate, B.A., Le Roux, X., Bloor, J.M., Ambroise, A., Fontaine, S., Price, P.M., Leadley, P.W., 2010. Responses of soil nitrogen cycling to the interactive effects of elevated CO2 and inorganic N supply. Plant and Soil 327(1), 35-47.

Nourimand, M., Todd, C.D., 2016. Allantoin increases cadmium tolerance in Arabidopsis via activation of antioxidant mechanisms. Plant and Cell Physiology 57(12), 2485-2496. DOI: https://doi.org/10.1093/pcp/pcw162.

Pan, L., Sinden, M.R., Kennedy, A.H., Chai, H., Watson, L., Graham, T.L., Kinghorn, A.D., 2009. Bioactive constituents of Helianthus tuberosus (Jerusalem artichoke). Phytochemistry Letters 2(1), 15-18. DOI: https://doi.org/10.1016/j.phytol.2008.10.003.

Sang, D., Chen, D., Liu, G., Liang, Y., Huang, L., Meng, X., Wang, Y., 2014. Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proceedings of the National Academy of Sciences 111(30), 11199-11204. DOI: https://doi.org/10.1073/pnas.1411859111.

Takagi, H., Ishiga, Y., Watanabe, S., Konishi, T., Egusa, M., Akiyoshi, N., Sakamoto, A., 2016. Allantoin, a stress-related purine metabolite, can activate jasmonate signalling in a MYC2-regulated and abscisic acid dependent manner. Journal of Experimental Botany 67(8), 2519-2532. DOI: https://doi.org/10.1093/jxb/erw289.

Tylova-Munzarova, E., Lorenzen, B., Brix, H., Votrubova, O., 2005. The effects of NH4+ and NO3- on growth, resource allocation and nitrogen uptake kinetics of Phragmites australis and Glyceria maxima. Aquatic Botany 81, 326-342. DOI: https://doi.org/10.1016/j.aquabot.2005.01.006.

Venturi, V., Keel, C., 2016. Signalling in the rhizosphere. Trends in Plant Science 21, 187-198. DOI: https://doi.org/10.1016/j.tplants.2016.01.005.

Weisskopf, L., Abou‐Mansour, E.L.I.A.N.E., Fromin, N., Tomasi, N., Santelia, D., Edelkott, I., Neumann, G., Aragno, M., Tabacchi, R., Martinoia, E., 2006. White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant, Cell and Environment 29(5), 919-927. DOI: https://doi.org/10.1111/j.1365-3040.2005.01473.x.

Weisskopf, L., Heller, S., Eberl, L., 2011. Burkholderia species are major inhabitants of white lupin cluster roots. Applied and Environmental Microbiology 77(21), 7715-7720.

Xue, K., Wu, L.Y., Deng, Y., He, Z.L., Van Nostrand, J., Robertson, P.G., Schmidt, T.M., Zhou, J.Z., 2013. Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands. Applied and Environmental Microbiology 79, 1284-1292. DOI: https://doi.org/10.1128/AEM.03393-12.

Yang, X.F., Li, L.L., Xu, Y., Kong, C.H., 2018. Kin recognition in rice (Oryza sativa) lines. New Phytologist 220(2), 567-578. DOI: https://doi.org/10.1111/nph.15296.

Zahar Haichar, F., Heulin, T., Guyonnet, J.P., Achouak, W., 2016. Stable isotope probing of carbon flow in the plant holobiont. Current Opinion in Biotechnology 41, 9-13. DOI: https://doi.org/10.1016/j.copbio.2016.02.023.