
Role of Growth Hormones in Regulating Abiotic Stress Tolerance in Plants
Laxmi Sharma*
ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi (110 012), India
Suman Roy
ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi (110 012), India
Tinku Goswami
ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, west Bengal (720 121), India
Pratik Satya
ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, west Bengal (720 121), India
Sheel Yadav
ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi (110 012), India
Prajjal Dey
Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir (190 001), India
Rajneesh Kumar
Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir (190 001), India
Anant Kumar Verma
Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir (190 001), India
Rakesh Singh
ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi (110 012), India
Gyanendra Pratap Singh
ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi (110 012), India
DOI: https://doi.org/10.54083/PHA/2.4.2024/145-159
Keywords: ABA, Abiotic stress, Auxin, Brassinosteroids, GA, ROS
Abstract
Plants are sessile organisms and face the adverse effect of environmental changes. They regulate the adaptations to these stresses through various mechanisms. Plant hormones are important regulators that control the growth through modulation of several molecules, messengers and other signal transduction pathways under different abiotic challenges. Most importantly, the downstream metabolic processes are maintained via homeostasis. Current developments in molecular biology have improved comprehensive knowledge on hormonal regulation of abiotic stress. Here, we converse on the major metabolism affected by abiotic challenges mainly drought, heat, salinity and cold other than the hormonal regulation of abiotic stress tolerance. The mechanistic understanding is really crucial for the crop improvement initiatives.
Downloads
not found
Reference
Abido, W.A.E., Allem, A., Zsombic, L., Attila, N., 2019. Effect of gibberellic acid on germination of six wheat cultivars under salinity stress levels. Asian Journal of Biological Sciences 12(1), 51-60.
Achard, P., Baghour, M., Chapple, A., Hedden, P., Van Der Straeten, D., Genschik, P., Moritz, T., Harberd, N.P., 2007. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proceedings of the National Academy of Sciences 104(15), 6484-6489. DOI: https://doi.org/10.1073/pnas.0610717104.
Aizaz, M., Lubna, Jan, R., Asaf, S., Bilal, S., Kim, K.M., AL-Harrasi, A., 2024. Regulatory dynamics of plant hormones and transcription factors under salt stress. Biology 13(9), 673. DOI: https://doi.org/10.3390/biology13090673.
Akter, N., Islam, M.R., Karim, M.A., Hossain, T., 2014. Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. Journal of Crop Science and Biotechnology 17, 41-48. DOI: https://doi.org/10.1007/s12892-013-0117-3.
Allakhverdiev, S.I., Nishiyama, Y., Miyairi, S., Yamamoto, H., Inagaki, N., Kanesaki, Y., Murata, N., 2002. Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiology 130(3), 1443-1453. DOI: https://doi.org/10.1104/pp.011114.
Anjum, S.A., Tanveer, M., Hussain, S., Tung, S.A., Samad, R.A., Wang, L., Khan, I., Rehman, N.U., Shah, A.N., Shahzad, B., 2016. Exogenously applied methyl jasmonate improves the drought tolerance in wheat imposed at early and late developmental stages. Acta Physiologiae Plantarum 38, 25. DOI: https://doi.org/10.1007/s11738-015-2047-9.
Bagheri, R., Ahmad, J., Bashir, H., Iqbal, M., Qureshi, M.I., 2017. Changes in rubisco, cysteine-rich proteins and antioxidant system of spinach (Spinacia oleracea L.) due to sulphur deficiency, cadmium stress and their combination. Protoplasma 254, 1031-1043. DOI: https://doi.org/10.1007/s00709-016-1012-9.
Bai, M.Y., Shang, J.X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T.P., Wang, Z.Y., 2012. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology 14, 810-817. DOI: https://doi.org/10.1038/ncb2546.
Bashir, W., Anwar, S., Zhao, Q., Hussain, I., Xie, F., 2019. Interactive effect of drought and cadmium stress on soybean root morphology and gene expression. Ecotoxicology and Environmental Safety 175, 90-101. DOI: https://doi.org/10.1016/j.ecoenv.2019.03.042.
Batool, S., Uslu, V.V., Rajab, H., Ahmad, N., Waadt, R., Geiger, D., Malagoli, M., Xiang, C.B., Hedrich, R., Rennenberg, H., Herschbach, C., 2018. Sulfate is incorporated into cysteine to trigger ABA production and stomatal closure. The Plant Cell 30(12), 2973-2987. DOI: https://doi.org/10.1105/tpc.18.00612.
Bawa, G., Liu, Z., Wu, R., Zhou, Y., Liu, H., Sun, S., Liu, Y., Qin, A., Yu, X., Zhao, Z., Yang, J., 2022. PIN1 regulates epidermal cells development under drought and salt stress using single-cell analysis. Frontiers in Plant Science 13, 1043204. DOI: https://doi.org/10.3389/fpls.2022.1043204.
Cackett, L., Cannistraci, CV., Meier, S., Ferrandi, P., Pencik, A., Gehring, C., Novak, O., Ingle, RA., Donaldson, L., 2022. Salt-specific gene expression reveals elevated auxin levels in plants grown under saline conditions. Frontiers in Plant Science 13, 804716. DOI: https://doi.org/10.3389/fpls.2022.804716.
Cai, S., Chen, G., Wang, Y., Huang, Y., Marchant, D.B., Wang, Y., Yang, Q., Dai, F., Hills, A., Franks, P.J., Nevo, E., 2017. Evolutionary conservation of ABA signalling for stomatal closure. Plant Physiology 174(2), 732-747. DOI: https://doi.org/10.1104/pp.16.01848.
Cao, W.H., Liu, J., He, X.J., Mu, R.L., Zhou, H.L., Chen, S.Y., Zhang, J.S., 2007. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiology 143(2), 707-719. DOI: https://doi.org/10.1104/pp.106.094292.
Casal, J.J., Balasubramanian, S., 2019. Thermomorphogenesis. Annual Review of Plant Biology 70(1), 321-346. DOI: https://doi.org/10.1146/annurev-arplant-050718-095919.
Chauhan, J., Prathibha, M.D., Singh, P., Choyal, P., Mishra, U.N., Saha, D., Kumar, R., Anuragi, H., Pandey, S., Bose, B., Mehta, B., 2023. Plant photosynthesis under abiotic stresses: Damages, adaptive and signalling mechanisms. Plant Stress 10, 100296. DOI: https://doi.org/10.1016/j.stress.2023.100296.
Chen, Z., Liu, Y., Yin, Y., Liu, Q., Li, N., Li, X., He, W., Hao, D., Liu, X., Guo, C., 2019. Expression of AtGA2ox1 enhances drought tolerance in maize. Plant Growth Regulation 89, 203-215. DOI: https://doi.org/10.1007/s10725-019-00526-x.
Choudhury, F.K., Rivero, R.M., Blumwald, E., Mittler, R., 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal 90(5), 856-867. DOI: https://doi.org/10.1111/tpj.13299.
Claeys, H., Skirycz, A., Maleux, K., Inzé, D., 2012. DELLA signalling mediates stress-induced cell differentiation in Arabidopsis leaves through modulation of anaphase-promoting complex/cyclosome activity. Plant Physiology 159(2), 739-747. DOI: https://doi.org/10.1104/pp.112.195032.
Clarke, S.M., Cristescu, S.M., Miersch, O., Harren, F.J.M., Wasternack, C., Mur, L.A.J., 2009. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist 182(1), 175-187. DOI: https://doi.org/10.1111/j.1469-8137.2008.02735.x.
Curvers, K., Seifi, H., Mouille, G., De Rycke, R., Asselbergh, B., Van Hecke, A., Vanderschaeghe, D., Höfte, H., Callewaert, N., Van Breusegem, F., Höfte, M., 2010. Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant Physiology 154(2), 847-860. DOI: https://doi.org/10.1104/pp.110.158972.
de Lucas, M., Daviere, J.M., Rodriguez-Falcon, M., Pontin, M., Iglesias-Pedraz, J.M., Lorrain, S., Fankhauser, C., Blazquez, M.A., Titarenko, E., Prat, S., 2008. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480-484. DOI: https://doi.org/10.1038/nature06520.
Dietzel, L., Brautigam, K., Pfannschmidt, T., 2008. Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry - Functional relationships between short-term and long-term light quality acclimation in plants. The FEBS Journal 275(6), 1080-1088. DOI: https://doi.org/10.1111/j.1742-4658.2008.06264.x.
Ding, Y., Shi, Y., Yang, S., 2020. Molecular regulation of plant responses to environmental temperatures. Molecular Plant 13(4), 544-564. DOI: https://doi.org/10.1016/j.molp.2020.02.004.
Dobrikova, A.G., Vladkova, R.S., Rashkov, G.D., Todinova, S.J., Krumova, S.B., Apostolova, E.L., 2014. Effects of exogenous 24-epibrassinolide on the photosynthetic membranes under non-stress conditions. Plant Physiology and Biochemistry 80, 75-82. DOI: https://doi.org/10.1016/j.plaphy.2014.03.022.
Du, H., Liu, H., Xiong, L., 2013. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Frontiers in Plant Science 4, 397. DOI: https://doi.org/10.3389/fpls.2013.00397.
Dubois, M., Skirycz, A., Claeys, H., Maleux, K., Dhondt, S., De Bodt, S., Vanden Bossche, R., De Milde, L., Yoshizumi, T., Matsui, M., Inzé, D., 2013. ETHYLENE RESPONSE FACTOR6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiology 162(1), 319-332. DOI: https://doi.org/10.1104/pp.113.216341.
Edel, K.H., Kudla, J., 2016. Integration of calcium and ABA signalling. Current Opinion in Plant Biology 33, 83-91. DOI: https://doi.org/10.1016/j.pbi.2016.06.010.
Enders, T.A., St. Dennis, S., Oakland, J., Callen, S.T., Gehan, M.A., Miller, N.D., Spalding, E.P., Springer, N.M., Hirsch, C.D., 2019. Classifying cold‐stress responses of inbred maize seedlings using RGB imaging. Plant Direct 3(1), 00104. DOI: https://doi.org/10.1002/pld3.104.
Farooq, M.A., Gill, R.A., Islam, F., Ali, B., Liu, H., Xu, J., He, S., Zhou, W., 2016. Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Frontiers in Plant Science 7, 468. DOI: https://doi.org/10.3389/fpls.2016.00468.
Feng, S., Martinez, C., Gusmaroli, G., Wang, Y.U., Zhou, J., Wang, F., Chen, L., Yu, L., Iglesias-Pedraz, J.M., Kircher, S., Schäfer, E., 2008. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451(7177), 475-479. DOI: https://doi.org/10.1038/nature06448.
Filek, M., Rudolphi-Skórska, E., Sieprawska, A., Kvasnica, M., Janeczko, A., 2017. Regulation of the membrane structure by brassinosteroids and progesterone in winter wheat seedlings exposed to low temperature. Steroids 128, 37-45. DOI: https://doi.org/10.1016/j.steroids.2017.10.002.
Friml, J., Wiśniewska, J., Benková, E., Mendgen, K., Palme, K., 2002. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415(6873), 806-809. DOI: https://doi.org/10.1038/415806a.
Fu, J., Wu, Y., Miao, Y., Xu, Y., Zhao, E., Wang, J., Sun, H., Liu, Q., Xue, Y., Xu, Y., Hu, T., 2017. Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Scientific Reports 7(1), 39865. DOI: https://doi.org/10.1038/srep39865.
Fu, Y., Yang, Y., Chen, S., Ning, N., Hu, H., 2019. Arabidopsis IAR4 modulates primary root growth under salt stress through ROS-mediated modulation of auxin distribution. Frontiers in Plant Science 10, 522. DOI: https://doi.org/10.3389/fpls.2019.00522.
Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L.S., Yamaguchi-Shinozaki, K., Shinozaki, K., 2004. A dehydration induced NAC protein, RD26, is involved in a novel ABA-dependent stress signalling pathway. The Plant Journal 39(6), 863-876. DOI: https://doi.org/10.1111/j.1365-313X.2004.02171.x.
Gamalero, E., Glick, B.R., 2022. Recent advances in bacterial amelioration of plant drought and salt stress. Biology 11(3), 437. DOI: https://doi.org/10.3390/biology11030437.
García-Pastor, M.E., Serrano, M., Guillén, F., Zapata, P.J., Valero, D., 2020. Preharvest or a combination of preharvest and postharvest treatments with methyl jasmonate reduced chilling injury, by maintaining higher unsaturated fatty acids and increased aril colour and phenolics content in pomegranate. Postharvest Biology and Technology 167, 111226. DOI: https://doi.org/10.1016/j.postharvbio.2020.111226.
Gieniec, M., Miszalski, Z., Rozpądek, P., Jędrzejczyk, R.J., Czernicka, M., Nosek, M., 2024. How the ethylene biosynthesis pathway of semi-halophytes is modified with prolonged salinity stress occurrence? International Journal of Molecular Sciences 25(9), 4777. DOI: https://doi.org/10.3390/ijms25094777.
Gujjar, R.S., Banyen, P., Chuekong, W., Worakan, P., Roytrakul, S., Supaibulwatana, K., 2020. A synthetic cytokinin improves photosynthesis in rice under drought stress by modulating the abundance of proteins related to stomatal conductance, chlorophyll contents and rubisco activity. Plants 9(9), 1106. DOI: https://doi.org/10.3390/plants9091106.
He, Z., Wen, C., Xu, W., 2023. Effects of endogenous melatonin deficiency on the growth, productivity and fruit quality properties of tomato plants. Horticulturae 9(8), 851. DOI: https://doi.org/10.3390/horticulturae9080851.
Heinemann, B., Hildebrandt, T.M., 2021. The role of amino acid metabolism in signalling and metabolic adaptation to stress-induced energy deficiency in plants. Journal of Experimental Botany 72(13), 4634-4645. DOI: https://doi.org/10.1093/jxb/erab182.
Higuchi, M., Pischke, M.S., Mähönen, A.P., Miyawaki, K., Hashimoto, Y., Seki, M., Kobayashi, M., Shinozaki, K., Kato, T., Tabata, S., Helariutta, Y., 2004. In planta functions of the Arabidopsis cytokinin receptor family. Proceedings of the National Academy of Sciences 101(23), 8821-8826. DOI: https://doi.org/10.1073/pnas.0402887101.
Hu, W., Cao, Y., Loka, D.A., Harris-Shultz, K.R., Reiter, R.J., Ali, S., Liu, Y., Zhou, Z., 2020. Exogenous melatonin improves cotton (Gossypium hirsutum L.) pollen fertility under drought by regulating carbohydrate metabolism in male tissues. Plant Physiology and Biochemistry 151, 579-588. DOI: https://doi.org/10.1016/j.plaphy.2020.04.001.
Ibanez, F., Suh, J.H., Wang, Y., Rivera, M., Setamou, M., Stelinski, L.L., 2022. Salicylic acid mediated immune response of Citrus sinensis to varying frequencies of herbivory and pathogen inoculation. BMC Plant Biology 22, 7. DOI: https://doi.org/10.1186/s12870-021-03389-5.
Iglesias, M.J., Terrile, M.C., Windels, D., Lombardo, M.C., Bartoli, C.G., Vazquez, F., Estelle, M., Casalongué, C.A., 2014. MiR393 regulation of auxin signalling and redox-related components during acclimation to salinity in Arabidopsis. PLoS One 9(9), 107678. DOI: https://doi.org/10.1371/journal.pone.0107678.
Irenaeus, T.S.K., Mitra, S.K., Bhatacharjee, T., Thangjam, B., Thejangulie, A., Maity, T.K., 2023. Impact of climate change on fruit production: Adaptation and mitigation strategies in Northeastern Himalayas. Research Biotica 5(2), 70-78. DOI: https://doi.org/10.54083/ResBio/5.2.2023/70-78.
Jahan, M.S., Wang, Y., Shu, S., Zhong, M., Chen, Z., Wu, J., Sun, J., Guo, S., 2019. Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L.) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Scientia Horticulturae 247, 421-429. DOI: https://doi.org/10.1016/j.scienta.2018.12.047.
Jiang, C., Belfield, E.J., Cao, Y., Smith, J.A.C., Harberd, N.P., 2013. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. The Plant Cell 25(9), 3535-3552. DOI: https://doi.org/10.1105/tpc.113.115659.
Jiang, M., Ye, F., Liu, F., Brestic, M., Li, X., 2022. Rhizosphere melatonin application reprograms nitrogen-cycling related microorganisms to modulate low temperature response in barley. Frontiers in Plant Science 13, 998861. DOI: https://doi.org/10.3389/fpls.2022.998861.
Jiang, Y.P., Chen, F., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., Chen, Z.X., Yu, J.Q., 2012. Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. Journal of Zhejiang University Science B 13, 811-823. DOI: https://doi.org/10.1631/jzus.B1200130.
Kaya, C., Ashraf, M., Dikilitas, M., Tuna, A.L., 2013. Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indole acetic acid (IAA) and inorganic nutrients - A field trial. Australian Journal of Crop Science 7(2), 249254.
Khan, S.U., Bano, A., Jalal-ud-Din., Gurmani, A.R., 2012. Abscisic acid and salicylic acid seed treatment as potent inducer of drought tolerance in wheat (Triticum aestivum L.). Pakistan Journal of Botany 44(SI), 43-49.
Kidokoro, S., Shinozaki, K., Yamaguchi-Shinozaki, K., 2022. Transcriptional regulatory network of plant cold-stress responses. Trends in Plant Science 27(9), 922-935. DOI: https://doi.org/10.1016/j.tplants.2022.01.008.
Kim, I.J., Baek, D., Park, H.C., Chun, H.J., Oh, D.H., Lee, M.K., Cha, J.Y., Kim, W.Y., Kim, M.C., Chung, W.S., Bohnert, H.J., 2013. Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Molecular Plant 6(2), 337-349. DOI: https://doi.org/10.1093/mp/sss100.
Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E., Scharf, K.D., 2007. Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10(3), 310-316. DOI: https://doi.org/10.1016/j.pbi.2007.04.011.
Kumar, P., Yadav, S., Singh, M.P., 2020. Possible involvement of xanthophyll cycle pigments in heat tolerance of chickpea (Cicer arietinum L.). Physiology and Molecular Biology of Plants 26, 1773-1785. DOI: https://doi.org/10.1007/s12298-020-00870-7.
Lee, M., Jung, J.H., Han, D.Y., Seo, P.J., Park, W.J., Park, C.M., 2012. Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta 235, 923-938. DOI: https://doi.org/10.1007/s00425-011-1552-3.
Liu, W., Li, R.J., Han, T.T., Cai, W., Fu, Z.W., Lu, Y.T., 2015. Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signalling in Arabidopsis. Plant Physiology 168(1), 343-356. DOI: https://doi.org/10.1104/pp.15.00030.
Liu, X., Quan, W., Bartels, D., 2022. Stress memory responses and seed priming correlate with drought tolerance in plants: An overview. Planta 255, 45. DOI: https://doi.org/10.1007/s00425-022-03828-z.
Liu, Y., Han, C., Deng, X., Liu, D., Liu, N., Yan, Y., 2018. Integrated physiology and proteome analysis of embryo and endosperm highlights complex metabolic networks involved in seed germination in wheat (Triticum aestivum L.). Journal of Plant Physiology 229, 63-76. DOI: https://doi.org/10.1016/j.jplph.2018.06.011.
Lo, S.F., Ho, T.H.D., Liu, Y.L., Jiang, M.J., Hsieh, K.T., Chen, K.T., Yu, L.C., Lee, M.H., Chen, C.Y., Huang, T.P., Kojima, M., Sakakibara, H., Chen, L.J., Yu, S.M., 2017. Ectopic expression of specific GA 2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnology Journal 15(7), 850-864. DOI: https://doi.org/10.1111/pbi.12681.
Ma, L., Huang, Z., Li, S., Ashraf, U., Yang, W., Liu, H., Xu, D., Li, W., Mo, Z., 2021. Melatonin and nitrogen applications modulate early growth and related physio-biochemical attributes in maize under Cd stress. Journal of Soil Science and Plant Nutrition 21, 978-990. DOI: https://doi.org/10.1007/s42729-021-00415-1.
Ma, Q.H., 2008. Genetic engineering of cytokinins and their application to agriculture. Critical Reviews in Biotechnology 28(3), 213-232. DOI: https://doi.org/10.1080/07388550802262205.
Marta, B., Szafrańska, K., Posmyk, M.M., 2016. Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Frontiers in Plant Science 7, 575. DOI: https://doi.org/10.3389/fpls.2016.00575.
Martins, S., Montiel-Jorda, A., Cayrel, A., Huguet, S., Paysant-Le Roux, C., Ljung, K., Vert, G., 2017. Brassinosteroid signalling-dependent root responses to prolonged elevated ambient temperature. Nature Communications 8, 309. DOI: https://doi.org/10.1038/s41467-017-00355-4.
McKhann, H.I., Gery, C., Bérard, A., Lévêque, S., Zuther, E., Hincha, D.K., De Mita, S., Brunel, D., Téoulé, E., 2008. Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biology 8, 105. DOI: https://doi.org/10.1186/1471-2229-8-105.
Mignolet-Spruyt, L., Xu, E., Idanheimo, N., Hoeberichts, F.A., Mühlenbock, P., Brosche, M., Van Breusegem, F., Kangasjarvi, J., 2016. Spreading the news: Subcellular and organellar reactive oxygen species production and signalling. Journal of Experimental Botany 67(13), 3831-3844. DOI: https://doi.org/10.1093/jxb/erw080.
Mishra, N., Jiang, C., Chen, L., Paul, A., Chatterjee, A., Shen, G., 2023. Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Frontiers in Plant Science 14, 1110622. DOI: https://doi.org/10.3389/fpls.2023.1110622.
Mostofa, M.G., Rahman, M.M., Ansary, M.M.U., Fujita, M., Tran, L.S.P., 2019. Interactive effects of salicylic acid and nitric oxide in enhancing rice tolerance to cadmium stress. International Journal of Molecular Sciences 20(22), 5798. DOI: https://doi.org/10.3390/ijms20225798.
Mustapha, T., Kutama, A., Auyo, M., Dangora, I., 2024. Synergic effects of salinity and Rhizoctonia solani (Kuhn) infection on growth and yield attributes of rice (Oryza sativa L.). Plant Health Archives 2(1), 18-25. DOI: https://doi.org/10.54083/PHA/2.1.2024/18-25.
Oh, E., Zhu, J.Y., Bai, M.Y., Arenhart, R.A., Sun, Y., Wang, Z.Y., 2014. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 3, e03031. DOI: https://doi.org/10.7554/eLife.03031.
Ohama, N., Sato, H., Shinozaki, K., Yamaguchi-Shinozaki, K., 2017. Transcriptional regulatory network of plant heat stress response. Trends in Plant Science 22(1), 53-65. DOI: https://doi.org/10.1016/j.tplants.2016.08.015.
Olszewski, N.E., West, C.M., Sassi, S.O., Hartweck, L.M., 2010. O-GlcNAc protein modification in plants: evolution and function. Biochimica et Biophysica Acta (BBA)-General Subjects 1800(2), 49-56. DOI: https://doi.org/10.1016/j.bbagen.2009.11.016.
Ordonio, R.L., Ito, Y., Hatakeyama, A., Ohmae-Shinohara, K., Kasuga, S., Tokunaga, T., Mizuno, H., Kitano, H., Matsuoka, M., Sazuka, T., 2014. Gibberellin deficiency pleiotropically induces culm bending in sorghum: An insight into sorghum semi-dwarf breeding. Scientific Reports 4(1), 5287. DOI: https://doi.org/10.1038/srep05287.
Park, J.S., Kim, H.J., Cho, H.S., Jung, H.W., Cha, J.Y., Yun, D.J., Oh, S.W., Chung, Y.S., 2019. Overexpression of AtYUCCA6 in soybean crop results in reduced ROS production and increased drought tolerance. Plant Biotechnology Reports 13, 161-168. DOI: https://doi.org/10.1007/s11816-019-00527-2.
Peleg, Z., Blumwald, E., 2011. Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology 14(3), 290-295. DOI: https://doi.org/10.1016/j.pbi.2011.02.001.
Pesaresi, P., Hertle, A., Pribil, M., Kleine, T., Wagner, R., Strissel, H., Ihnatowicz, A., Bonardi, V., Scharfenberg, M., Schneider, A., Pfannschmidt, T., 2009. Arabidopsis STN7 kinase provides a link between short-and long-term photosynthetic acclimation. The Plant Cell 21(8), 2402-2423. DOI: https://doi.org/10.1016/j.pbi.2011.02.001.
Qin, F., Shinozaki, K., Yamaguchi-Shinozaki, K., 2011. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant and Cell Physiology 52(9), 1569-1582. DOI: https://doi.org/10.1093/pcp/pcr106.
Raza, A., Charagh, S., Najafi-Kakavand, S., Abbas, S., Shoaib, Y., Anwar, S., Sharifi, S., Lu, G., Siddique, K.H.M., 2023. Role of phytohormones in regulating cold stress tolerance: Physiological and molecular approaches for developing cold-smart crop plants. Plant Stress 8, 100152. DOI: https://doi.org/10.1016/j.stress.2023.100152.
Rieu, I., Eriksson, S., Powers, S.J., Gong, F., Griffiths, J., Woolley, L., Benlloch, R., Nilsson, O., Thomas, S.G., Hedden, P., Phillips, A.L., 2008. Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. The Plant Cell 20(9), 2420-2436. DOI: https://doi.org/10.1105/tpc.108.058818.
Rivero, R.M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., Blumwald, E., 2007. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences 104(49), 19631-19636. DOI: https://doi.org/10.1073/pnas.0709453104.
Rodríguez-Serrano, M., Romero-Puertas, M.C., Sanz-Fernández, M., Hu, J., Sandalio, L.M., 2016. Peroxisomes extend peroxules in a fast response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a. Plant Physiology 171(3), 1665-1674. DOI: https://doi.org/10.1104/pp.16.00648.
Roy, N., Verma, R.K., Chetia, S.K., Sharma, V., Sen, P., Modi, M.K., 2023. Molecular mapping of drought-responsive QTLs during the reproductive stage of rice using a GBS (genotyping-by-sequencing) based SNP linkage map. Molecular Biology Reports 50(1), 65-76. DOI: https://doi.org/10.1007/s11033-022-08001-0.
Roy, S., Arora, A., Chinnusamy, V., Singh, V.P., 2017. Endogenous reduced ascorbate: An indicator of plant water deficit stress in wheat. Indian Journal of Plant Physiology 22, 365-368. DOI: https://doi.org/10.1007/s40502-017-0308-x.
Sakata, T., Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y., Higashitani, N., Miyazawa, Y., Takahashi, H., Watanabe, M., Higashitani, A., 2010. Auxins reverse plant male sterility caused by high temperatures. Proceedings of the National Academy of Sciences 107(19), 8569-8574. DOI: https://doi.org/10.1073/pnas.1000869107.
Salehin, M., Li, B., Tang, M., Katz, E., Song, L., Ecker, J.R., Kliebenstein, D.J., Estelle, M., 2019. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nature Communications 10, 4021. DOI: https://doi.org/10.1038/s41467-019-12002-1.
Salvi, P., Manna, M., Kaur, H., Thakur, T., Gandass, N., Bhatt, D., Muthamilarasan, M., 2021. Phytohormone signalling and crosstalk in regulating drought stress response in plants. The Plant Cell Reports 40, 1305-1329. DOI: https://doi.org/10.1007/s00299-021-02683-8.
Schröder, F., Lisso, J., Obata, T., Erban, A., Maximova, E., Giavalisco, P., Kopka, J., Fernie, A.R., Willmitzer, L., Müssig, C., 2014. Consequences of induced brassinosteroid deficiency in Arabidopsis leaves. BMC Plant Biology 14, 309. DOI: https://doi.org/10.1186/s12870-014-0309-0.
Sharma, L., Dalal, M., Verma, R.K., Kumar, S.V., Yadav, S.K., Pushkar, S., Kushwaha, S.R., Bhowmik, A., Chinnusamy, V., 2018. Auxin protects spikelet fertility and grain yield under drought and heat stresses in rice. Environmental and Experimental Botany 150, 9-24. DOI: https://doi.org/10.1016/j.envexpbot.2018.02.013.
Sharma, L., Roy, S., Satya, P., Alam, N.M., Goswami, T., Barman, D., Bera, A., Saha, R., Mitra, S., Mitra, J., 2024. Exogenous ascorbic acid application ameliorates drought stress through improvement in morpho-physiology, nutrient dynamics, stress metabolite production and antioxidant activities recovering cellulosic fibre production in jute (Corchorus olitorius L.). Industrial Crops and Products 217, 118808. DOI: https://doi.org/10.1016/j.indcrop.2024.118808.
Sharma, P., Kumar, A., Bhardwaj, R., 2016. Plant steroidal hormone epibrassinolide regulate - Heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environmental and Experimental Botany 122, 1-9. DOI: https://doi.org/10.1016/j.envexpbot.2015.08.005.
Shi, H., Chen, L., Ye, T., Liu, X., Ding, K., Chan, Z., 2014. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiology and Biochemistry 82, 209-217. DOI: https://doi.org/10.1016/j.plaphy.2014.06.008.
Shi, H., Jiang, C., Ye, T., Tan, D.X., Reiter, R.J., Zhang, H., Liu, R., Chan, Z., 2015. Comparative physiological, metabolomic and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. Journal of Experimental Botany 66(3), 681-694. DOI: https://doi.org/10.1093/jxb/eru373.
Skirycz, A., Claeys, H., De Bodt, S., Oikawa, A., Shinoda, S. andriankaja, M., Maleux, K., Eloy, N.B., Coppens, F., Yoo, S.D., Saito, K., 2011. Pause-and-stop: The effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signalling in cell cycle arrest. The Plant Cell 23(5), 1876-1888. DOI: https://doi.org/10.1105/tpc.111.084160.
Soda, M.N., Hayashi, Y., Takahashi, K., Kinoshita, T., 2022. Tryptophan synthase ß subunit 1 affects stomatal phenotypes in Arabidopsis thaliana. Frontiers in Plant Science 13, 1011360. DOI: https://doi.org/10.3389/fpls.2022.1011360.
Song, F., Han, X., Zhu, X., Herbert, S.J., 2012. Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages. Canadian Journal of Soil Science 92(3), 501-507. DOI: https://doi.org/10.4141/cjss2010-057.
Stavang, J.A., Gallego-Bartolomé, J., Gómez, M.D., Yoshida, S., Asami, T., Olsen, J.E., García-Martínez, J.L., Alabadí, D., Blázquez, M.A., 2009. Hormonal regulation of temperature-induced growth in Arabidopsis. The Plant Journal 60(4), 589-601. DOI: https://doi.org/10.1111/j.1365-313X.2009.03983.x.
Sun, J., Qi, L., Li, Y., Chu, J., Li, C., 2012. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genetics 8, 1002594. DOI: https://doi.org/10.1111/j.1365-313X.2009.03983.x.
Suzuki, N., Miller, G., Salazar, C., Mondal, H.A., Shulaev, E., Cortes, D.F., Shuman, J.L., Luo, X., Shah, J., Schlauch, K., Shulaev, V., 2013. Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. The Plant Cell 25(9), 3553-3569. DOI: https://doi.org/10.1105/tpc.113.114595.
Tahjib-Ul-Arif, M., Siddiqui, M.N., Sohag, A.A.M., Sakil, M.A., Rahman, M.M., Polash, M.A.S., Mostofa, M.G., Tran, L.S.P., 2018. Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. Journal of Plant Growth Regulation 37, 1318-1330. DOI: https://doi.org/10.1007/s00344-018-9867-y.
Taniguchi, Y.Y., Taniguchi, M., Tsuge, T., Oka, A., Aoyama, T., 2010. Involvement of Arabidopsis thaliana phospholipase Dζ2 in root hydrotropism through the suppression of root gravitropism. Planta 231, 491-497. DOI: https://doi.org/10.1007/s00425-009-1052-x.
Thalmann, M., Pazmino, D., Seung, D., Horrer, D., Nigro, A., Meier, T., Kölling, K., Pfeifhofer, H.W., Zeeman, S.C., Santelia, D., 2016. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. The Plant Cell 28(8), 1860-1878. DOI: https://doi.org/10.1105/tpc.16.00143.
Thorsen, S.M., Höglind, M., 2010. Assessing winter survival of forage grasses in Norway under future climate scenarios by simulating potential frost tolerance in combination with simple agroclimatic indices. Agricultural and Forest Meteorology 150(9), 1272-1282. DOI: https://doi.org/10.1016/j.agrformet.2010.05.010.
Toh, S., Imamura, A., Watanabe, A., Nakabayashi, K., Okamoto, M., Jikumaru, Y., Hanada, A., Aso, Y., Ishiyama, K., Tamura, N., Iuchi, S., 2008. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiology 146(3), 1368-1385. DOI: https://doi.org/10.1104/pp.107.113738.
Uemura, M., Joseph, R.A., Steponkus, P.L., 1995. Cold acclimation of Arabidopsis thaliana (Effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiology 109(1), 15-30. DOI: https://doi.org/10.1104/pp.109.1.15.
Vainonen, J.P., Sakuragi, Y., Stael, S., Tikkanen, M., Allahverdiyeva, Y., Paakkarinen, V., Aro, E., Suorsa, M., Scheller, H.V., Vener, A.V., Aro, E.M., 2008. Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of Arabidopsis thaliana. The FEBS Journal 275(8), 1767-1777. DOI: https://doi.org/10.1111/j.1742-4658.2008.06335.x.
Verma, V., Ravindran, P., Kumar, P.P., 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology 16, 86. DOI: https://doi.org/10.1186/s12870-016-0771-y.
Wagner, D., Przybyla, D., Op Den Camp, R., Kim, C., Landgraf, F., Lee, K.P., Würsch, M., Laloi, C., Nater, M., Hideg, E., Apel, K., 2004. The genetic basis of singlet oxygen induced stress responses of Arabidopsis thaliana. Science 306(5699), 1183-1185. DOI: https://doi.org/10.1126/science.1103178.
Wang, K., Xing, Q., Ahammed, G.J., Zhou, J., 2022. Functions and prospects of melatonin in plant growth, yield and quality. Journal of Experimental Botany 73(17), 5928-5946. DOI: https://doi.org/10.1093/jxb/erac233.
Wang, P., Liu, W.C., Han, C., Wang, S., Bai, M.Y., Song, C.P., 2024. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. Journal of Integrative Plant Biology 66(3), 330-367. DOI: https://doi.org/10.1111/jipb.13601.
Wang, Z., Zhang, Y., Huang, Z., Huang, L., 2008. Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant and Soil 310, 137-149. DOI: https://doi.org/10.1007/s11104-008-9641-1.
Wassie, M., Zhang, W., Zhang, Q., Ji, K., Cao, L., Chen, L., 2020. Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicology and Environmental Safety 191, 110206. DOI: https://doi.org/10.1016/j.ecoenv.2020.110206.
Wilson, R.L., Kim, H., Bakshi, A., Binder, B.M., 2014. The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress. Plant Physiology 165(3), 1353-1366. DOI: https://doi.org/10.1104/pp.114.241695.
Xiao, F., Zhou, H., 2023. Plant salt response: Perception, signalling and tolerance. Frontiers in Plant Science 13, 1053699. DOI: https://doi.org/10.3389/fpls.2022.1053699.
Xu, C., Wang, Y., Yang, H., Tang, Y., Liu, B., Hu, X., Hu, Z., 2023. Cold acclimation alleviates photosynthetic inhibition and oxidative damage induced by cold stress in citrus seedlings. Plant Signalling & Behavior 18(1), 2285169. DOI: https://doi.org/10.1080/15592324.2023.2285169.
Xu, J., Xue, C., Xue, D., Zhao, J., Gai, J., Guo, N., Xing, H., 2013. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana. PloS One 8(7), e69810. DOI: https://doi.org/10.1371/journal.pone.0069810.
Yan, S., Che, G., Ding, L., Chen, Z., Liu, X., Wang, H., Zhao, W., Ning, K., Zhao, J., Tesfamichael, K., Wang, Q., 2016. Different cucumber CsYUC genes regulate response to abiotic stresses and flower development. Scientific Reports 6(1), 20760. DOI: https://doi.org/10.1038/srep20760.
Yang, J., Thames, S., Best, N.B., Jiang, H., Huang, P., Dilkes, B.P., Eveland, A.L., 2018. Brassinosteroids modulate meristem fate and differentiation of unique inflorescence morphology in Setaria viridis. The Plant Cell 30(1), 48-66. DOI: https://doi.org/10.1105/tpc.17.00816.
Yang, J., Tian, L., Sun, M.X., Huang, X.Y., Zhu, J., Guan, Y.F., Jia, Q.S., Yang, Z.N., 2013. AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiology 162(2), 720-731. DOI: https://doi.org/10.1104/pp.113.214940.
Yang, X., Jia, Z., Pu, Q., Tian, Y., Zhu, F., Liu, Y., 2022. ABA mediates plant development and abiotic stress via alternative splicing. International Journal of Molecular Sciences 23(7), 3796. DOI: https://doi.org/10.3390/ijms23073796.
Yang, Y., Guo, Y., 2018. Unraveling salt stress signalling in plants. Journal of Integrative Plant Biology 60(9), 796-804. DOI: https://doi.org/10.1111/jipb.12689.
Ye, H., Liu, S., Tang, B., Chen, J., Xie, Z., Nolan, T.M., Jiang, H., Guo, H., Lin, H.Y., Li, L., Wang, Y., Tong, H., Zhang, M., Chu, C., Li, Z., Aluru, M., Aluru, S., Schnable, P.S., Yin, Y., 2017. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nature Communications 8, 14573. DOI: https://doi.org/10.1038/ncomms14573.
Yoon, J.Y., Hamayun, M., Lee, S.K., Lee, I.J., 2009. Methyl jasmonate alleviated salinity stress in soybean. Journal of Crop Science and Biotechnology 12, 63-68. DOI: https://doi.org/10.1007/s12892-009-0060-5.
Yu, J., Chen, L., Xu, M., Huang, B., 2012. Effects of elevated CO2 on physiological responses of tall fescue to elevated temperature, drought stress and the combined stresses. Crop Science 52(4), 1848-1858. DOI: https://doi.org/10.2135/cropsci2012.01.0030.
Yu, Z., Duan, X., Luo, L., Dai, S., Ding, Z., Xia, G., 2020. How plant hormones mediate salt stress responses. Trends in Plant Science 25(11), 1117-1130. DOI: https://doi.org/10.1016/j.tplants.2020.06.008.
Zandalinas, S.I., Fritschi, F.B., Mittler, R., 2021. Global warming, climate change and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends in Plant Science 26(6), 588-599. DOI: https://doi.org/10.1016/j.tplants.2021.02.011.
Zhang, L., Gao, M., Hu, J., Zhang, X., Wang, K., Ashraf, M., 2012. Modulation role of abscisic acid (ABA) on growth, water relations and glycinebetaine metabolism in two maize (Zea mays L.) cultivars under drought stress. International Journal of Molecular Sciences 13(3), 3189-3202. DOI: https://doi.org/10.3390/ijms13033189.
Zhang, T., Shi, Z., Zhang, X., Zheng, S., Wang, J., Mo, J., 2020. Alleviating effects of exogenous melatonin on salt stress in cucumber. Scientia Horticulturae 262, 109070. DOI: https://doi.org/10.1016/j.scienta.2019.109070.
Zhao, C., Jiang, W., Zayed, O., Liu, X., Tang, K., Nie, W., Li, Y., Xie, S., Li, Y., Long, T., Liu, L., Zhu, Y., Zhao, Y., Zhu, J.K., 2021. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. National Science Review 8(1), 149. DOI: https://doi.org/10.1093/nsr/nwaa149.
Zhao, F.Y., Han, M.M., Zhang, S.Y., Wang, K., Zhang, C.R., Liu, T., Liu, W., 2012. Hydrogen peroxide‐mediated growth of the root system occurs via auxin signalling modification and variations in the expression of cell‐cycle genes in rice seedlings exposed to cadmium stress. Journal of Integrative Plant Biology 54(12), 991-1006. DOI: https://doi.org/10.1111/j.1744-7909.2012.01170.x.
Zheng, Y., Wang, X., Cui, X., Wang, K., Wang, Y., He, Y., 2023. Phytohormones regulate the abiotic stress: An overview of physiological, biochemical and molecular responses in horticultural crops. Frontiers in Plant Science 13, 1095363. DOI: https://doi.org/10.3389/fpls.2022.1095363.
Zhou, Y., Underhill, S.J.R., 2017. Breadfruit (Artocarpus altilis) DELLA genes: Gibberellin-regulated stem elongation and response to high salinity and drought. Plant Growth Regulation 83, 375-383. DOI: https://doi.org/10.1007/s10725-017-0302-3.