Use of Biostimulants in Fruit Crop Enhancement
Nishchala*
Dept. of Fruit Science, College of Horticulture & Forestry, Neri, Hamirpur, Himachal Pradesh (177 001), India
Aashima Sharma
Dept. of Fruit Science, College of Horticulture & Forestry, Neri, Hamirpur, Himachal Pradesh (177 001), India
Akriti Banyal
Dept. of Fruit Science, College of Horticulture & Forestry, Neri, Hamirpur, Himachal Pradesh (177 001), India
Shiv Kumar Shivandu
Dept. of Fruit Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh (173 230), India
Ishani Sharma
Dept. of Fruit Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh (173 230), India
DOI: https://doi.org/10.54083/BioResToday/6.6.2024/359-364
Keywords: Biostimulants, Humic substances, Stress tolerance, Sustainable agriculture
Abstract
Biostimulants have emerged as a vital component in modern agricultural practices, offering significant benefits for fruit crop production. These substances, whether of natural or synthetic origin, exert beneficial effects on plant growth by enhancing metabolic processes and improving stress tolerance, thereby augmenting both crop yield and quality. Moreover, they contribute positively to soil health, further bolstering their impact on agricultural productivity. Principal categories of biostimulants encompass humic substances, seaweed extracts, amino acids and protein hydrolysates, microbial inoculants and silicon-based products. Each category functions through a different mechanism, such as increasing the absorption of nutrients, promoting the growth of roots, controlling hormone levels and increasing the water-use efficiency. In order to ensure crop resilience, support sustainable agriculture and satisfy the increasing demand for premium fruit crops worldwide, biostimulants are well-positioned to play a significant role. This article examines how biostimulants can boost fruit crop yield while maintaining the safety and quality of the food supply.
Downloads
not found
Reference
Al-Marsoumi, F.S.H., Al-Hadethi, M.E.A., 2020. Effect of humic acid and seaweed extract spray in leaf mineral content of mango seedlings. Plant Archives 20.63(1), 827-830.
Badawy, I.F.M., Abou-Zaid, E.A.A., Hussein, E.M.E., 2019. Cracking and fruit quality of “Manfalouty” pomegranate as affected by pre-harvest of chitosan, calcium chloride and gibbrellic acid spraying. Middle East Journal of Agricultural Research 8(3), 873-882.
Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N., Zhang, L., 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science 10, 1068. DOI: https://doi.org/10.3389/fpls.2019.01068.
Boselli, M., Bahouaoui, M.A., Lachhab, N., Sanzani, S.M., Ferrara, G., Ippolito, A., 2019. Protein hydrolysates effects on grapevine (Vitis vinifera L., cv. Corvina) performance and water stress tolerance. Scientia Horticulturae 258, 108784. DOI: https://doi.org/10.1016/j.scienta.2019.108784.
Cheng, X.F., Xie, M.M., Li, Y., Liu, B.Y., Liu, C.Y., Wu, Q.S., Kuča, K., 2022. Effects of field inoculation with arbuscular mycorrhizal fungi and endophytic fungi on fruit quality and soil properties of Newhall navel orange. Applied Soil Ecology 170, 104308. DOI: https://doi.org/10.1016/j.apsoil.2021.104308.
Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., Rouphael, Y., 2017. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Frontiers in Plant Science 8, 2202. DOI: https://doi.org/10.3389/fpls.2017.02202.
du Jardin, P., 2015. Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae 196, 3-14. DOI: https://doi.org/10.1016/j.scienta.2015.09.021.
El-Sese, A.M., Mohamed, A.K.A., Abou-Zaid, E.A.A., Abd-El-Ghany, A.M.M., 2020. Impact of foliar application with seaweed extract, amino acids and vitamins on yield and berry quality of some Grapevine cultivars. SVU-International Journal of Agricultural Sciences 2(1), 73-84. DOI: https://doi.org/10.21608/svuijas.2020.27347.1008.
Estrada-Ortiz, E., Trejo-Téllez, L.I., Gómez-Merino, F.C., Núñez-Escobar, R., Sandoval-Villa, M., 2013. The effects of phosphite on strawberry yield and fruit quality. Journal of Soil Science and Plant Nutrition 13(3), 612-620. DOI: https://doi.org/10.4067/S0718-95162013005000049.
Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., Yermiyahu, U., 2015. The use of biostimulants for enhancing nutrient uptake. Chapter 2. In: Advances in Agronomy, Volume 130. (Ed.) Sparks, D.L. Academic Press, Elsevier Inc. pp. 141-174. DOI: https://doi.org/10.1016/bs.agron.2014.10.001.
Helaly, M.N., El-Hoseiny, H., El-Sheery, N.I., Rastogi, A., Kalaji, H.M., 2017. Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiology and Biochemistry 118, 31-44. DOI: https://doi.org/10.1016/j.plaphy.2017.05.021.
Hosny, S.M., Hammad, G., El Sharbasy, S., Zayed, Z., 2016. Effect of coconut milk, casein hydrolysate and yeast extract on the proliferation of in vitro Barhi date palm (Phoenix dactylifera L.). Journal of Horticulture Science & Ornamental Plants 8(1), 46-54.
Jindo, K., Martim, S.A., Navarro, E.C., Pérez-Alfocea, F., Hernandez, T., Garcia, C., Aguiar, N.O., Canellas, L.P., 2012. Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant and Soil 353, 209-220. DOI: https://doi.org/10.1007/s11104-011-1024-3.
Katiyar, D., Hemantaranjan, A., Singh, B., 2015. Chitosan as a promising natural compound to enhance potential physiological responses in plant: A review. Indian Journal of Plant Physiology 20, 1-9. DOI: https://doi.org/10.1007/s40502-015-0139-6.
Ladan, M.A.R., Soleimani, A., 2010. Compensatory effects of humic acid on physiological characteristics of pistachio seedlings under salinity stress. In: XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on the Challenge for a Sustainable Production, Protection and Consumption of Mediterranean Fruits and Nuts. Acta Horticulturae 940, 253-255. DOI: https://doi.org/10.17660/ActaHortic.2012.940.35.
Liu, X.M., Xu, Q.L., Li, Q.Q., Zhang, H., Xiao, J.X., 2017. Physiological responses of the two blueberry cultivars to inoculation with an arbuscular mycorrhizal fungus under low-temperature stress. Journal of Plant Nutrition 40(18), 2562-2570. DOI: https://doi.org/10.1080/01904167.2017.1380823.
Ma, J.F., 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50(1), 11-18. DOI: https://doi.org/10.1080/00380768.2004.10408447.
Mahmoodi, H., Shokouhian, A.A., Asghari, A., Ghanbari, A., 2018. Effect of humic acid on qualitative and quantitative characteristics of Kiwifruit cv. Hayward. Pomology Research 2(2), 96-108.
Mohamed, S.A., Ahmed, H.S., 2019. Study effect of chitosan and gibberellic acid on growth, flowering, fruit set, yield and fruit quality of Washington navel orange trees. Middle East Journal of Agricultural Research 8(1), 255-267.
Pereira, V.F., de Resende, M.L.V., Ribeiro Júnior, P.M., Regina, M.A., da Mota, R.V., Vitorino, L.R.R., 2012. Potassium phosphite on the control of downy mildew of grapevine and physicochemical characteristics of Merlot grapes. Pesquisa Agropecuária Brasileira, Brasília 47(11), 1581-1588.
Rostami, M., Shokouhian, A., Mohebodini, M., 2022. Effect of humic acid, nitrogen concentrations and application method on the morphological, yield and biochemical characteristics of strawberry ‘Paros’. International Journal of Fruit Science 22(1), 203-214. DOI: https://doi.org/10.1080/15538362.2021.2022566.
Rouphael, Y., Colla, G., 2018. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science 9, 1655. DOI: https://doi.org/10.3389/fpls.2018.01655.
Rouphael, Y., Colla, G., 2020. Biostimulants in agriculture. Frontiers in Plant Science 11, 40. DOI: https://doi.org/10.3389/fpls.2020.00040.
Saa, S., Rio, A.O.D., Castro, S., Brown, P.H., 2015. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D.A. Webb). Frontiers in Plant Science 6, 87. DOI: https://doi.org/10.3389/fpls.2015.00087.
Schaafsma, G., 2009. Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. European Journal of Clinical Nutrition 63(10), 1161-1168. DOI: https://doi.org/10.1038/ejcn.2009.56.
Seema, K., Mehta, K., Singh, N., 2018. Studies on the effect of plant growth promoting rhizobacteria (PGPR) on growth, physiological parameters, yield and fruit quality of strawberry cv. chandler. Journal of Pharmacognosy and Phytochemistry 7(2), 383-387.
Sharma, R.R., Datta, S.C., Varghese, E., 2018. Effect of Surround WP®, a kaolin-based particle film on sunburn, fruit cracking and postharvest quality of ‘Kandhari’ pomegranates. Crop Protection 114, 18-22. DOI: https://doi.org/10.1016/j.cropro.2018.08.009.
Tara, K.K., Dutta, M., Laishram, R., Haokip, S.W., 2024. Biostimulants: A defense for horticultural crops facing abiotic stress. Biotica Research Today 6(3), 124-127.
Yaghubi, K., Ghaderi, N., Vafaee, Y., Javadi, T., 2016. Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Scientia Horticulturae 213, 87-95. DOI: https://doi.org/10.1016/j.scienta.2016.10.012.
Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., Brown, P.H., 2017. Biostimulants in plant science: A global perspective. Frontiers in Plant Science 7, 2049. DOI: https://doi.org/10.3389/fpls.2016.02049.