Article Details

  1. Home
  2. Article Details
image description

PDF

Published

2024-04-22

How to cite

Saratha, M., Angappan, K., 2024. Arms race of melanogenic actinobacteria Actinoalloteichus cyanogriseus against mulberry root rot pathogens. Research Biotica 6(2), 38-45. DOI: 10.54083/ResBio/6.2.2024/38-45.

Issue

License

Copyright (c) 2024 Biotica Research Today

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

HOME / ARCHIVES / Vol. 6 No. 2 : April-June (2024) / Research Articles

Arms Race of Melanogenic Actinobacteria Actinoalloteichus cyanogriseus against Mulberry Root Rot Pathogens

Saratha M.*

Research Extension Centre, Central Silk Board, Gobichettipalayam, Erode, Tamil Nadu (638 476), India

Angappan K.

Dept. of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu (641 003), India

DOI: https://doi.org/10.54083/ResBio/6.2.2024/38-45

Keywords: Anti-fungal metabolites, GC-MS, Melanogenic actinobacteria, Mulberry root rot

Abstract


Mulberry (Morus indica L.), is an astounding multipurpose woody, deciduous crop grown all over the world. Due to pathogens that cause root rot diseases in mulberry have a major impact on intensive crop cultivation and commercial cocoon production. Notably, it has been found that these pathogens affect healthy mulberry plantations regardless of their age, variety that grown in wide-ranging soil and agro-climatic conditions. To manage the pathogens, two potent melanogenic actinobacteria Actinoalloteichus cyanogriseus isolated from mulberry rhizosphere with few extremophilic characteristics were identified in the previous study. Their antagonism towards these pathogens exhibited through a variety of phenomena. The chemical fingerprints of bioactive isolates revealed the presence of more than 30 compounds for each. Advantageously, smaller molecules were found to be the majority of them. Important bioactive inhibitory compounds including, 2,4-DTBP, binapacryl, decanoic acid groups, 1-hydroxy-6-methylphenazine, etc. were identified through GC-MS. In addition to evidence of antifungal metabolites there were also found traces of anti-bacterial, allelopathic compounds with other antioxidants and flavonoid compounds. The current work thus sheds light on the antifungal potency of melanogenic isolates, which has been unexplored/ poorly analyzed.

Downloads


not found

Reference


Agoramoorthy, G., Chandrasekaran, M., Venkatesalu, V., Hsu, M.J., 2007. Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Brazilian Journal of Microbiology 38(4), 739-742. DOI: https://doi.org/10.1590/S1517-83822007000400028.

Ahmad, M.S., El-Gendy, A.O., Ahmed, R.R., Hassan, H.M., El-Kabbany, H.M., Merdash, A.G., 2017. Exploring the antimicrobial and antitumor potentials of Streptomyces sp. AGM12-1 isolated from Egyptian soil. Frontiers in Microbiology 8, 438. DOI: https://doi.org/10.3389/fmicb.2017.00438.

Ahsan, T., Chen, J., Zhao, X., Irfan, M., Wu, Y., 2017. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express 7, 547(1), 1-9. DOI: https://doi.org/10.1186/s13568-017-0351-z.

Arkin, M.R., Wells, J.A., 2004. Small-molecule inhibitors of protein-protein interactions: Progressing towards the dream. Nature Reviews Drug Discovery 3, 301-317. DOI: https://doi.org/10.1038/nrd1343.

Awa, E.P., Ibrahim, S., Ameh, D.A., 2012. GC/MS analysis and antimicrobial activity of diethyl ether fraction of methanolic extract from the stem bark of Annona senegalensis Pers. International Journal of Pharmaceutical Sciences and Research 3(11), 4213-4218.

Barka, E.A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.P., Clement, C., Ouhdouch, Y., van Wezel, G.P., 2015. Taxonomy, physiology and natural products of Actinobacteria. Microbiology and Molecular Biology Reviews 80(1), 1-43. DOI: https://doi.org/10.1128/mmbr.00019-15.

Boudjelal, F., Zitouni, A., Mathieu, F., Lebrihi, A., Sabaou, N., 2011. Taxonomic study and partial characterization of antimicrobial compounds from a moderately halophilic strain of the genus Actinoalloteichus. Brazilian Journal of Microbiology 42(3), 835-845. DOI: https://doi.org/10.1590%2FS1517-83822011000300002.

Cazar, M.E., Hirschmann, G.S., Astudillo, L., 2005. Antimicrobial butyrolactone I derivatives from Ecuadorian soil fungus Aspergillus terreus Thorn. var terreus. World Journal of Microbiology and Biotechnology 21, 1067-1075. DOI: https://doi.org/10.1007/s11274-004-8150-5.

Chandrasekaran, M., Senthilkumar, A., Venkatesalu, V., 2011. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. European Review for Medical and Pharmacological Sciences 15(7), 775-780.

Chowdary, N.B., 2006. Studies on root rot disease of mulberry Morus spp. and its management with special reference to the antagonistic microbes. PhD Thesis, submitted to University of Mysore, Mysore, Karnataka.

Claessen, D., Rozen, D.E., Kuipers, O.P., Sogaard-Andersen, L., van Wezel, G.P., 2014. Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nature Reviews Microbiology 12, 115-124. DOI: https://doi.org/10.1038/nrmicro3178.

Cordovez, V., Carrion, V.J., Etalo, D.W., Mumm, R., Zhu, H., Van Wezel, G.P., Raaijmakers, J.M., 2015. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Frontiers in Microbiology 6, 1081. DOI: https://doi.org/10.3389/fmicb.2015.01081.

CSB, 2023. Functioning of Central Silk Board and Performance of Indian Silk Industry. Central Silk Board, Ministry of Textiles, Govt. of India, Bangalore - 560 068 (India). pp. 1-21.

Dharni, S., Sanchita, Maurya, A., Samad, A., Srivastava, S.K., Sharma, A., Patra, D.D., 2014. Purification, characterization and in vitro activity of 2,4-di-tert-butylphenol from Pseudomonas monteilii PsF84: Conformational and molecular docking studies. Journal of Agricultural and Food Chemistry 62(26), 6138-6146. DOI: https://doi.org/10.1021/jf5001138.

Dilika, F., Bremner, P.D., Meyer, J.J.M., 2000. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitoterapia 71(4), 450-452. DOI: https://doi.org/10.1016/s0367-326x(00)00150-7.

Franks, A., Egan, S., Holmström, C., James, S., Lappin-Scott, H., Kjelleberg, S., 2006. Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. Applied and Environmental Microbiology 72(9), 6079-6087. DOI: https://doi.org/10.1128/aem.00559-06.

Garbeva, P., Hordijk, C., Gerards, S., Boer, W.D., 2014. Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiology Ecology 87(3), 639-649. DOI: https://doi.org/10.1111/1574-6941.12252.

Gideon, V.A., 2015. GC-MS analysis of phytochemical components of Pseudoglochidion anamalayanum Gamble: An endangered medicinal tree. Asian Journal of Plant Science and Research 5(12), 36-41.

Hagai, E., Dvora, R., Havkin-Blank, T., Zelinger, E., Porat, Z., Schulz, S., Helman, Y., 2014. Surface-motility induction, attraction and hitchhiking between bacterial species promote dispersal on solid surfaces. The ISME Journal 8(5), 1147-1151. DOI: https://doi.org/10.1038/ismej.2013.218.

Hemashenpagam, N., 2011. Purification of secondary metabolites from soil actinomycetes. International Journal of Microbiology Research 3(3), 148-156. DOI: https://doi.org/10.9735/0975-5276.3.3.148-156.

Huang, L., Zhu, X., Zhou, S., Cheng, Z., Shi, K., Zhang, C., Shao, H., 2021. Phthalic acid esters: Natural sources and biological activities. Toxins 13(7), 495. DOI: https://doi.org/10.3390/toxins13070495.

Joo, S.S., Kim, Y.I., Lee, D.I., 2010. Antimicrobial and antioxidant properties of secondary metabolites from White Rose flower. The Plant Pathology Journal 26(1), 57-62. DOI: https://doi.org/10.5423/PPJ.2010.26.1.057.

Kadhim, M.J., Mohammed, G.J., Hussein, H.M., 2016. Analysis of bioactive metabolites from Candida albicans using (GC-MS) and evaluation of antibacterial activity. International Journal of Pharmaceutical and Clinical Research 8(7), 655-670.

Khamna, S., Yokota, A., Lumyong, S., 2009. Actinomycetes isolated from medicinal plant rhizosphere soils: Diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology 25, 649-655. DOI: https://doi.org/10.1007/s11274-008-9933-x.

Kumar, P.P., Kumaravel, S., Lalitha, C., 2010. Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. African Journal of Biochemistry Research 4(7), 191-195.

Kunova, A., Bonaldi, M., Saracchi, M., Pizzatti, C., Chen, X., Cortesi, P., 2016. Selection of Streptomyces against soil borne fungal pathogens by a standardized dual culture assay and evaluation of their effects on seed germination and plant growth. BMC Microbiology 16, 272. DOI: https://doi.org/10.1186/s12866-016-0886-1.

Limban, C., Chifiriuc, M.C., 2011. Antibacterial activity of new dibenzoxepinone oximes with fluorine and trifluoromethyl group substituents. International Journal of Molecular Sciences 12(10), 6432-6444. DOI: https://doi.org/10.3390%2Fijms12106432.

Managamuri, U., Vijayalakshmi, M., Ganduri, V.S.R.K., Rajulapati, S.B., Bonigala, B., Kalyani, B.S., Poda, S., 2017. Isolation, identification, optimization, and metabolite profiling of Streptomyces sparsus VSM-30. 3 Biotech 7, 217. DOI: https://doi.org/10.1007/s13205-017-0835-1.

Manivasagan, P., Venkatesan, J., Sivakumar, K., Kim, S.K., 2013. Actinobacterial melanins: Current status and perspective for the future. World Journal of Microbiology and Biotechnology 29, 1737-1750. DOI: https://doi.org/10.1007/s11274-013-1352-y.

Munaganti, R.K., Muvva, V., Naragani, K., 2015. Production of amylase by Arthrobacter kerguelensis VL-RK_09 isolated from Mango Orchards. Biotechnology Journal International 8(4), 1-10. DOI: https://doi.org/10.9734/BBJ/2015/19383.

Norman, R.S., Moeller, P., McDonald, T.J., Morris, P.J., 2004. Effect of pyocyanin on a crude-oil-degrading microbial community. Applied and Environmental Microbiology 70(7), 4004-4011. DOI: https://doi.org/10.1128/AEM.70.7.4004-4011.2004.

Patil, S.R., Senthilraja, C., 2021. Bacterial bioagents: An effective tool for plant disease management. Biotica Research Today 3(1), 017-018.

Lewis, K., Tzilivakis, J., Green, A., Warner, D., 2006. Pesticide Properties DataBase (PPDB). Data set/Database, University of Hertfordshire. URL: http://www.herts.ac.uk/aeru/footprint/index2.htm.

Prajapati, V.S., Purohit, H.J., Raje, D.V., Parmar, N., Patel, A.B., Jones, O.A.H., Joshi, C.G., 2016. The effect of a high-roughage diet on the metabolism of aromatic compounds by rumen microbes: A metagenomic study using Mehsani buffalo (Bubalus bubalis). Applied Microbiology and Biotechnology 100, 1319-1331. DOI: https://doi.org/10.1007/s00253-015-7239-0.

Premathilaka, U.L.R.R., Silva, G.M.S.W., 2016. Bioactive compounds and antioxidant activity of Bunchosia armeniaca. World Journal of Pharmacy and Pharmaceutical Sciences 5(10), 1237-1247.

Ramesh, H.L., Sivaram, V., Murthy, V.N.Y., 2014. Antioxidant and medicinal properties of mulberry (Morus sp.): A review. World Journal of Pharmaceutical Research 3(6), 320-343.

Ross, B.P., DeCruz, S.E., Lynch, T.B., Davis-Goff, K., Toth, I., 2004. Design, synthesis and evaluation of a liposaccharide drug delivery agent: Application to the gastrointestinal absorption of gentamicin. Journal of Medicinal Chemistry 47(5), 1251-1258. DOI: https://doi.org/10.1021/jm030474j.

Ruangwong, O.U., Kunasakdakul, K., Daengsuwan, W., Wonglom, P., Pitija, K., Sunpapao, A., 2022. A Streptomyces rhizobacterium with antifungal properties against spadix rot in flamingo flowers. Physiological and Molecular Plant Pathology 117, 101784. DOI: https://doi.org/10.1016/j.pmpp.2021.101784.

Salem, M.Z.M., Elansary, H.O., Elkelish, A.A., Zeidler, A., Ali, H.M., Mervat, E.H., Yessoufou, K., 2016. In vitro bioactivity and antimicrobial activity of Picea abies and Larix decidua wood and bark extracts. BioResources 11(4), 9421-9437. DOI: https://doi.org/10.15376/biores.11.4.9421-9437.

Sang, M.K., Kim, K.D., 2012. The volatile producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. Journal of Applied Microbiology 113(2), 383-398. DOI: https://doi.org/10.1111/j.1365-2672.2012.05330.x.

Saratha, M., Angappan, K., Karthikeyan, S., Marimuthu, S., Chozhan, K., 2021. Exploration of soil and weather factors on mulberry root rot incidence in the western zone of Tamil Nadu, India. International Journal of Environment and Climate Change 11(12), 18-29. DOI: https://doi.org/10.9734/ijecc/2021/v11i1230552.

Saratha, M., Angappan, K., Karthikeyan, S., Marimuthu, S., Chozhan, K., 2022. Actinoalloteichus cyanogriseus: A broad-spectrum bio-agent against mulberry root rot pathogens. Egyptian Journal of Biological Pest Control 32, 33. DOI: https://doi.org/10.1186/s41938-022-00532-8.

Shi, W., Dan, W.J., Tang, J.J., Zhang, Y., Nandinsuren, T., Zhang, A.L., Gao, J.M., 2016. Natural products as sources of new fungicides (III): Antifungal activity of 2,4-dihydroxy-5-methylacetophenone derivatives. Bioorganic & Medicinal Chemistry Letters 26(9), 2156-2158. DOI: https://doi.org/10.1016/j.bmcl.2016.03.073.

Shivlata, L., Satyanarayana, T., 2015. Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications. Frontiers in Microbiology 6, 01014. DOI: https://doi.org/10.3389/fmicb.2015.01014.

Snyder, L.R., Kirkland, J.J., Glajch, J.L., 1997. Chapter 4: Sample Preparation. In: Practical HPLC Method Development. 2nd Edition. John Wiley and Sons, New York. pp. 100-173. DOI: https://doi.org/10.1002/9781118592014.ch4.

Tan, L.T.H., Chan, K.G., Chan, C.K., Khan, T.M., Lee, L.H., Goh, B.H., 2018. Antioxidative potential of a Streptomyces sp. MUM292 isolated from mangrove soil. BioMed Research International 2018, 1-13. DOI: https://doi.org/10.1155/2018/4823126.

Tiwari, A.K., De Maio, M., Singh, P.K., Mahato, M.K., 2015. Evaluation of surface water quality by using GIS and a heavy metal pollution index (HPI) model in a coal mining area, India. Bulletin of Environmental Contamination and Toxicology 95, 304-310. DOI: https://doi.org/10.1007/s00128-015-1558-9.

Varsha, K.K., Devendra, L., Shilpa, G., Priya, S., Pandey, A., Nampoothiri, K.M., 2015. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. International Journal of Food Microbiology 211, 44-50. DOI: https://doi.org/10.1016/j.ijfoodmicro.2015.06.025.

Yayli, N., Gulec, C., Uçuncu, O., Yaşar, A., Ulker, S., Coşkunçelebi, K., Terzioglu, S., 2006. Composition and antimicrobial activities of volatile components of Minuartia meyeri. Turkish Journal of Chemistry 30(1), 71-76. URL: https://journals.tubitak.gov.tr/chem/vol30/iss1/8.

Zhang, X., Song, C., Bai, Y., Hu, J., Pan, H., 2021. Cytotoxic and antimicrobial activities of secondary metabolites isolated from the deep-sea-derived Actinoalloteichus cyanogriseus 12A22. 3 Biotech 11, 283. DOI: https://doi.org/10.1007/s13205-021-02846-0.